

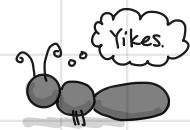
CS250/EE387 - LECTURE 14 - LOCALITY!

AGENDA

- ① LOCALLY CORRECTABLE CODES
- ② RM CODES as LCCs
- ③ HIGH-RATE LCCs [sketch]

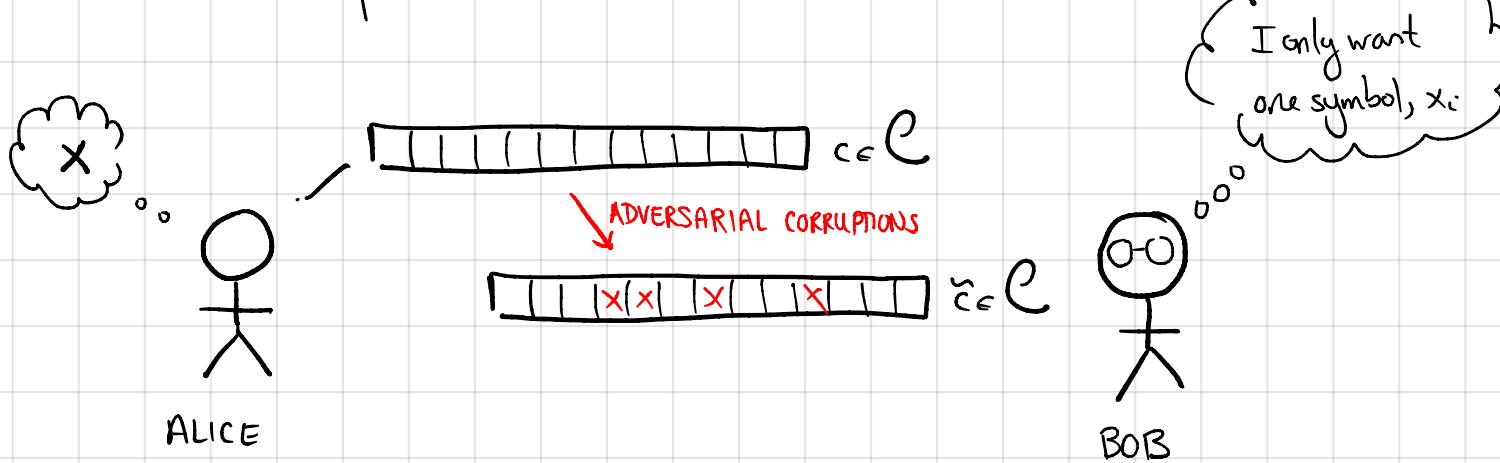
TODAY'S ANT FACT

A species of Malaysian ant has a defense mechanism where workers can perform an act of suicidal altruism by essentially causing their own head to explode in a shower of venom.



Today we will talk about LOCALLY DECODABLE CODES.

The basic setup is:



If Bob only wants one symbol of Alice's message (or her codeword), then he could decode the whole thing and figure out x_i .

But that seems wasteful...

The idea of LOCAL DECODING is to allow Bob to figure out x_i in SUBLINEAR TIME. In particular, he won't even have enough time to look at all of \mathcal{C} !

1) LOCALLY CORRECTABLE CODES.

Let us try to formalize this goal:

NOT THE
CORRECT
DEF.

$\mathcal{C} \subseteq \mathbb{F}_q^n$ is a (s, Q) -Locally Correctable Code (LCC) if there is an algorithm A so that the following holds:

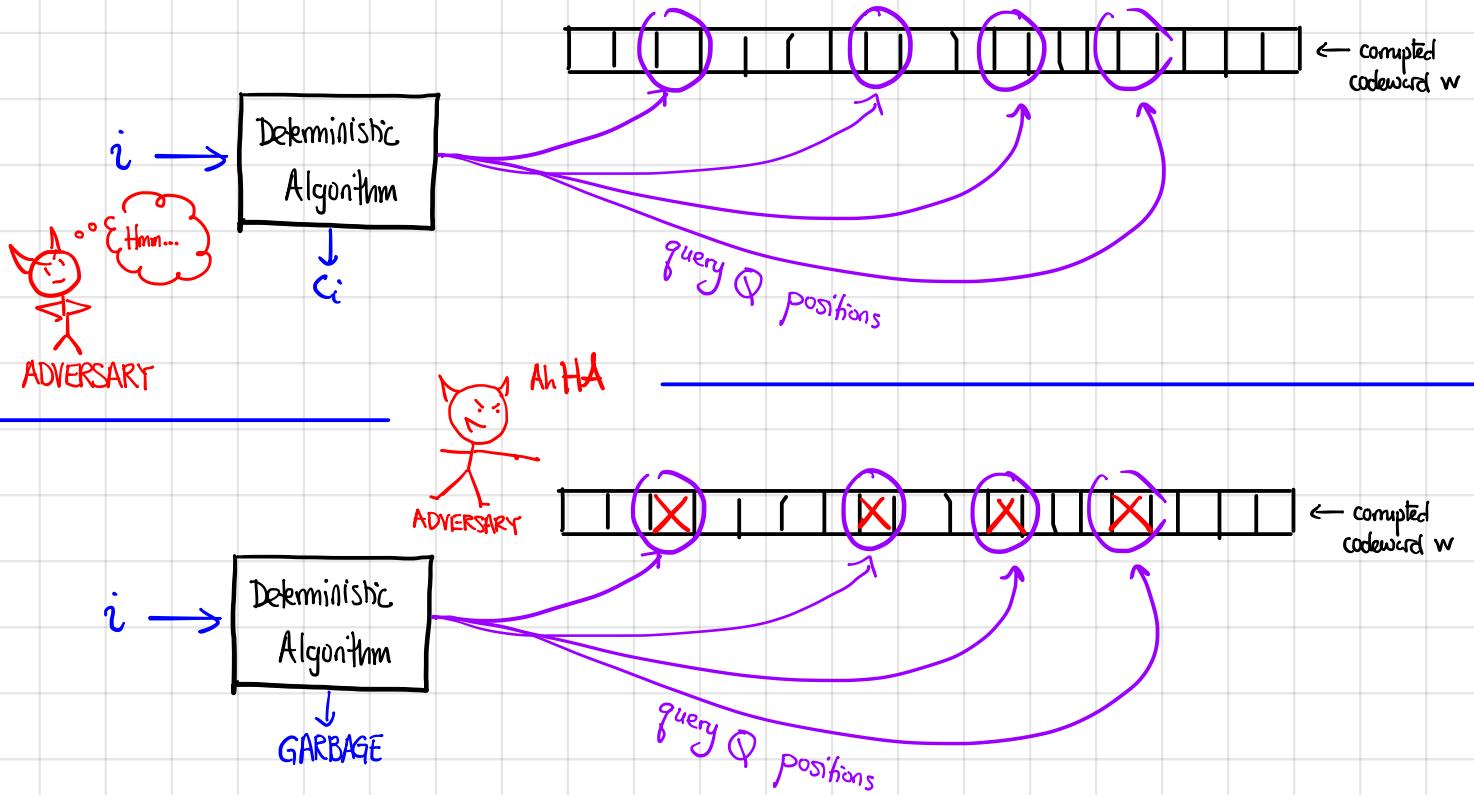
for all $w \in \mathbb{F}_q^n$ so that $\exists c \in \mathcal{C}$ s.t. $\Delta(c, w) \leq s n$, and $\forall i \in [n]$,

$A^{(w)}(i)$ makes at most Q queries to w and returns c_i .
input is i
 A has oracle access to w

Does this make sense? **NO.**

Sure, it parses, but if $Q = o(n)$ then this is a vacuous definition.

CARTOON:



That is, if the queries are deterministic, and $Q < s n$, then the adversary can COMPLETELY mess up the algorithm's view.

Instead, we will need to RANDOMIZE the queries if we want to deal with an adversary.

DEF. $\mathcal{C} \subseteq \mathbb{F}_q^n$ is a (s, Q, γ) -LOCALLY CORRECTABLE CODE (LCC) if there is a randomized algorithm A so that the following holds:

for all $w \in \mathbb{F}_q^n$ so that $\exists c \in \mathcal{C}$ s.t. $\Delta(c, w) \leq s n$, and $\forall i \in [n]$,

- $A^{(w)}(i)$ makes at most Q queries to w
input is i
 A has oracle access to w
- $A^{(w)}(i) = c_i$ with probability at least $1 - \gamma$.

OTHER NOTIONS of LOCALITY:

- If you only want to recover a MESSAGE SYMBOL x_i instead of a CODEWORD SYMBOL c_i , it's called a LOCALLY DECODABLE CODE.
- If there's no adversary and you just want to be able to recover any symbol in SOME local way (not including that symbol) it's a LOCALLY REPAIRABLE CODE. (or LOCALLY RECOVERABLE CODE)
- Also: REGENERATING CODES, LOCALLY TESTABLE CODES, RELAXED LCCs, MAXIMALLY RECOVERABLE CODES, ...

BRIEF LIT. REVIEW on LCC's.

Q

n (as a function of k)

Comments

2	$n = \Theta(2^k)$	Matching upper + lower bounds here.
3	$\exp\left(\left(\frac{k}{\epsilon^2}\right)^{1/8}\right) \stackrel{(*)}{\leq} n \stackrel{(**)}{\leq} \exp\left(\exp\left(O(\sqrt{\log k} \log \log k)\right)\right)$	The upper bound is actually an LDC (weaker than LCC). The lower bound holds only for LCCs [not LDCs].
$O(\log(n))$	$k \leq n \stackrel{(***)}{\leq} \text{poly}(k)$	
$O(n^\epsilon)$	$k \leq n \stackrel{****}{\leq} (1+\alpha)k \text{ for any } \alpha > 0$	

(*) [Kothari, Manohar, 2023] (**) [Efremenko '09], [Yekhanin '08]

(***) [RM codes, below] (****) We'll discuss one such construction below.

Today we'll see how RM codes fit in, starting at $Q=2$ and ending at $Q=n^\epsilon$.

② RM codes as LCCs. First let's recall the def. of REED-MULLER CODES:

Recall that $\mathbb{F}_q[X_1, \dots, X_m]$ is the space of m -variate polynomials over \mathbb{F}_q .

The (total) DEGREE of a monomial $X_1^{i_1} X_2^{i_2} \dots X_m^{i_m}$ is $\sum_{j=1}^m i_j$.

The DEGREE of $f \in \mathbb{F}_q[X_1, \dots, X_m]$ is the largest degree of any monomial in f .

DEF. The m -VARIATE REED-MULLER CODE of DEGREE r over \mathbb{F}_q is

$$\text{RM}_q(m, r) = \left\{ (f(\vec{\alpha}_1), \dots, f(\vec{\alpha}_q^m)) : f \in \mathbb{F}_q[X_1, \dots, X_m], \deg(f) \leq r \right\}$$

REMARK. Note that we may assume that each X_i has degree $\leq q$, since $\alpha = \alpha^q$ for all $\alpha \in \mathbb{F}_q$.

We saw BINARY RM CODES back in Lecture 6 when we were trying to figure out how to get good binary codes.

Let's start with $\text{RM}_2(m, 1)$: that is, codewords are just the evaluations of **LINEAR** polynomials

$$f(x_1, x_2, \dots, x_m) = \sum_i a_i x_i$$

This is also called
the HADAMARD CODE.
You saw it on your HW.

NOTE: Technically for $\text{RM}_2(m, 1)$ we should also have a constant term here, but it will be convenient for us to ignore it...

Consider the following algorithm for locally decoding the Hadamard code:

ALG. Input: Query access to $g: \mathbb{F}_2^m \rightarrow \mathbb{F}_2$ s.t. $\Delta(g, f) < 2^{m-2}$ for some $f \in \text{RM}_2(m, 1)$, and an index $\alpha \in \mathbb{F}_2^m$
Output: A guess for $f(\alpha)$

Choose $\beta \in \mathbb{F}_2^m$ at random.

RETURN $g(\beta) + g(\beta + \alpha)$

CLAIM: $\text{RM}_2(m, 1)$ is a $(\delta, 2, 1-2\delta)$ -LCC for any $\delta < 1/4$.

Proof. If $g(\beta) = f(\beta)$ and $g(\beta + \alpha) = f(\beta + \alpha)$ $(*)$

then $g(\beta) + g(\beta + \alpha) = f(\beta) + f(\beta + \alpha) = f(\alpha)$ since $\deg(f) = 1$.

Here I'm using the assumption that f has no constant term.

$(*)$ happens with probability $\geq 1-2\delta$, since

$$\mathbb{P}\{g(\beta) \neq f(\beta)\} = \mathbb{P}\{g(\beta + \alpha) \neq f(\beta + \alpha)\} \leq \delta, \text{ since } \beta \text{ and } \beta + \alpha \text{ are both uniformly random.}$$

(Notice that they are NOT jointly uniform, but each marginal is uniform).

GREAT! Now we have a 2-query LCC. But the rate is not great: $\frac{m}{2^m}$.

QUESTIONS:

① Can we do better for $Q=2$?

NO. See [Kerenidis+Wolf]

② What if $Q = \omega(1)$?

YES! Coming up next.

2B $Q = \log(n)$

We'd like to use the same idea, but there's a problem.

If our strategy is "hope that our $\log(n)$ queries completely avoid the errors", we'll be in trouble. Indeed, whp there will be about $S \cdot \log(n)$ errors in our $\log(n)$ queries.

The idea will be to make our queries themselves somewhat robust to error.

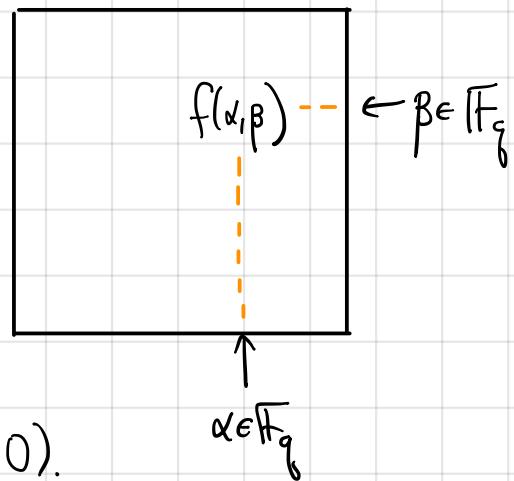
For motivation, consider $\text{RM}_q(2, r)$.

That is, the codewords of $\text{RM}_q(2, r)$ are evaluations of bivariate polynomials

$$f(X, Y) = \sum_{i+j \leq r} c_{i,j} X^i Y^j.$$

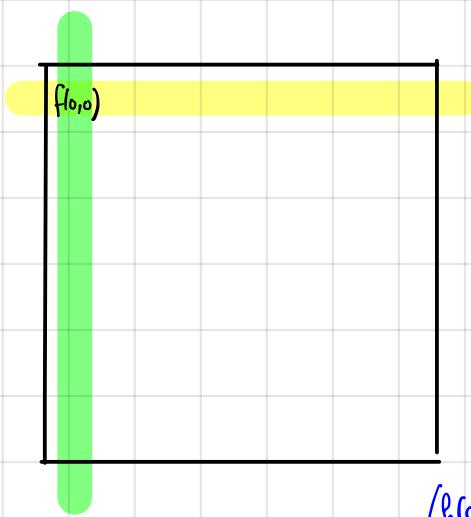
GOAL: Recover a single symbol (say, $f(\alpha, \beta)$) given query access to $g: \mathbb{F}_q^2 \rightarrow \mathbb{F}_q$ with $\Delta(g, f) \leq \delta$.

We can think of codewords as $q \times q$ grids of evaluation points. \hookrightarrow



Suppose I want to recover $f(0,0)$.

As before, we want to find a bunch of LOCAL, LINEAR relationships involving $f(0,0)$.



← This row is $(f(0,0), f(0,\gamma), \dots, f(0,\gamma^{q-1}))$
 $= (g(0), g(\gamma), \dots, g(\gamma^{q-1}))$

$$\text{where } g(Y) := f(0,Y) = \sum_{i+j \leq r} c_{ij} 0^i \cdot Y^j$$

$$= \sum_{j \leq r} c_{0j} Y^j$$

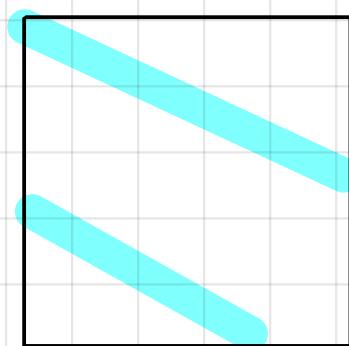
\hookrightarrow Similarly, this column is $\begin{pmatrix} h(0) \\ h(\gamma) \\ \vdots \\ h(\gamma^{q-1}) \end{pmatrix}$ where $h(X) = \sum_{j \leq r} c_{j0} X^j$

Hey, those are univariate polynomials! (aka, RS codewords).

Moreover, the restriction of f to ANY line is an RS codeword!

Consider the line $L(Z) = (a_1 Z + b_1, a_2 Z + b_2)$,
 $a_i, b_i \in \mathbb{F}_q$.

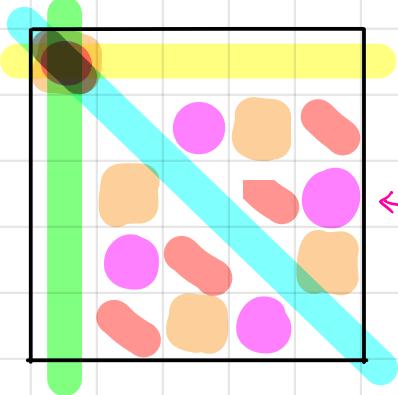
Then $f(L(Z)) = \sum_{i+j \leq r} (a_1 Z + b_1)^i (a_2 Z + b_2)^j$
 $= \text{some degree } \leq r \text{ polynomial in } Z$.



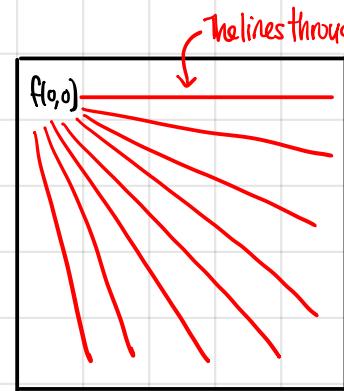
The lines through $f(0,0)$ have the properties we want:

- There are not too many (only q) points per line.
- Any two lines through $f(0,0)$ don't intersect anywhere else.

PICTURE(S):



Confusing but more accurate



Less accurate but hopefully more clear.

This inspires an algorithm:

ALG. (Let $r < q$ and suppose $\delta < \frac{1}{2}(1 - \gamma_q)$.)

Input: (Query access to $g: \mathbb{F}_q^2 \rightarrow \mathbb{F}_q$ s.t. $\Delta(g, f) < \delta \cdot q^2$ for some $f \in \text{RM}_q(2, r)$).

and an index $(\alpha, \beta) \in \mathbb{F}_q^2$

Output: A guess for $f(\alpha, \beta)$.

Choose $(\sigma, \tau) \in \mathbb{F}_q^2 \setminus \{(0,0)\}$ at random, let $L(Z) = (\sigma \cdot Z + \alpha, \tau \cdot Z + \beta)$.

Query $g(L(\lambda))$ for all $\lambda \in \mathbb{F}_q$ and let $\tilde{h}(Z) := g(L(Z))$.

Use RS decoding to find an $h \in \mathbb{F}_q[Z]$, $\deg(h) \leq r$, so that $\Delta(h, \tilde{h}) < \frac{q-r}{2}$

half the distance of the RS code.

RETURN $h(0)$.

CLAIM. For any $\delta > 0$, ALG is correct with prob. $\geq 1 - \left(\frac{2\delta q}{q-r-1}\right)$

Proof. The RS decoder will successfully find $h(z) = f(L(z))$ as long as the number of errors on $\{L(x) : x \in \mathbb{F}_q\}$ is $< \left\lfloor \frac{q-r}{2} \right\rfloor$, since $f(L(z)) \in \text{RS}_q(q, r+1)$.

$\mathbb{E}\{\text{#errors on a line}\} = \delta q$, so by Markov's inequality,

$$\mathbb{P}\{\text{#errors on a line} \geq \left\lfloor \frac{q-r}{2} \right\rfloor\} \leq \frac{\delta q}{\left\lfloor \frac{q-r}{2} \right\rfloor} < \frac{2\delta q}{q-r-1}$$

NOTE: If $\delta < \frac{1}{2}(1 - \frac{r}{q}) = \frac{1}{2} \text{dist}(\text{RM}_q(2, r))$, then the failure probability above is interesting, otherwise it reads "with prob. ≥ 0 ."

For example:

COR. $\text{RM}_q(2, r=\sqrt{2}) \subseteq \mathbb{F}_q^N$ N=q^2 \text{ here}, is a $(Q=\sqrt{N}, \delta, 4\delta)$ -LCC for any $\delta < \frac{1}{4}$. The rate is $\approx \frac{1}{8}$ and the distance is $\frac{1}{2}$.

We can do EXACTLY the same thing with $m > 2$.

LARGE-but-CONSTANT m:

Then we get $Q = q = N^{1/m}$, since $N = q^m$.

However, as $m \uparrow$ then the rate \downarrow . Recall $R = \binom{q+m}{m} / q^m \leq \left(\frac{c}{m}\right)^m \rightarrow 0$ as $m \rightarrow \infty$.

But this does give us a constant-rate code w/ $Q = N^{1/100}$ (say).

EVEN LARGER m:

Choose $m = \frac{q}{\log(q)}$.

Then $N = q^{q/\log(q)} = 2^q$ so. $Q = q = \log(N)$

But the rate is even worse, and in fact goes to 0 like $\frac{1}{\log(n)}$.

This simple construction is the state-of-the-art for $\log(n)$ queries. Can you do better???

So far, we have seen how to use RM codes to get:

Q	n (as a function of k)	Code
2	$n = \Theta(2^k)$	$RM_2(m, 1)$
$\log(n)$	$n = \text{poly}(k)$	$RM_q(m, r)$ for $m \approx q/\log(q)$, $q > r$
n^ε	$n = \Theta_\varepsilon(k)$	$RM_q(m, r)$ for $m = 1/\varepsilon$, $q > r$
\sqrt{n}	$n = 8^k$	$RM_q(2, \frac{q}{2})$

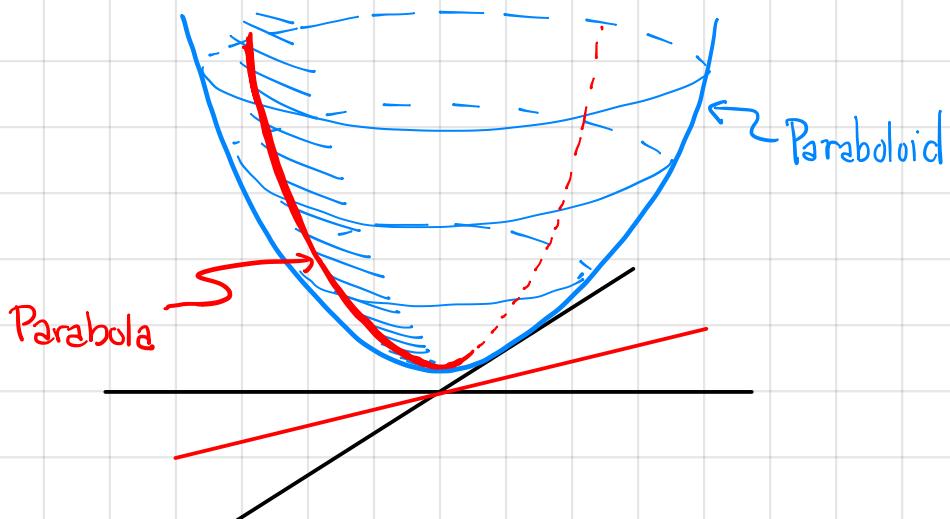
All of these have pretty low rate. Could we get an LCC with rate $\rightarrow 1$?

For $Q = n^\varepsilon$ (and even a bit smaller), the answer is YES.

There are several constructions. Here's a sketch of one based on RM codes.

② HIGH-RATE LCCs.

The thing we needed from RM codes are that restrictions to lines are low-deg polys.



To make the rate better, we might try

$$\mathcal{C} = \left\{ (f(\alpha_1), \dots, f(\alpha_{q^m})) : f \in \mathbb{F}_q[X], \text{ AND } \deg(f(L(z))) \leq r \ \forall \text{ lines } L \right\}$$

This would be a win as long as $|C| \geq |\text{RM}_q(m, r)|$, aka, as long as there are high-degree polynomials whose restrictions to lines are low-degree.

QUESTION.

Does there exist a polynomial $f: \mathbb{F}_q^m \rightarrow \mathbb{F}_q$ of degree $> r$ so that, \forall lines $L: \mathbb{F}_q \rightarrow \mathbb{F}_q^m$, $\deg(f(L(z))) \leq r$? (for $r < q-1$)

This means $\exists g(z)$ w/ $\deg(g) \leq r$ s.t. $g(\lambda) = f(L(\lambda)) \forall \lambda \in \mathbb{F}_q$

ANSWER.

Over \mathbb{R} or \mathbb{C} : **NO.** (fun exercise!)

Over \mathbb{F}_p , for prime p : **NO.** (see [Rubinfeld-Sudan '96])

Over \mathbb{F}_q , and $q > 2r$: **NO.** (" " ")

Over \mathbb{F}_q , and $q \approx r(1+\epsilon)$: **YES**, and there are LOTS of them.

[Guo, Kopparty, Sudan '13]

EXAMPLE. Consider $f(X, Y) = X^2 Y^2$ over \mathbb{F}_4 .

The degree of f is 4.

Any restriction of f to a line is equivalent to a polynomial of $\deg \leq 3 = q-1$. (Not too helpful).

CLAIM \forall lines $L: \mathbb{F}_4 \rightarrow \mathbb{F}_4^2$, $\deg(f(L(z))) \leq 2$.

Pf. Say $L(z) = (\sigma z + \alpha, \tau z + \beta)$.

$$\begin{aligned}
 f(L(z)) &= (\sigma z + \alpha)^2 (\tau z + \beta)^2 \\
 &= (\sigma^2 z^2 + \alpha^2)(\tau^2 z^2 + \beta^2) & [(\alpha+b)^2 = \alpha^2 + b^2 \text{ in } \mathbb{F}_2] \\
 &= \sigma^2 \tau^2 z^4 + (\alpha^2 \tau^2 + \sigma^2 \beta^2) z^2 + \alpha^2 \beta^2 & [\text{algebra}] \\
 &\equiv (\alpha^2 \tau^2 + \sigma^2 \beta^2) z^2 + \sigma^2 \tau^2 z + \alpha^2 \beta^2. & [\alpha^4 = \alpha \text{ in } \mathbb{F}_q]
 \end{aligned}$$

That's just one example, but it turns out there are actually LOTS, enough so that

$$\mathcal{C} = \left\{ (f(\alpha_1), \dots, f(\alpha_{q^m})) : f \in \mathbb{F}_q[X], \text{ AND } \deg(f(L(z))) \leq r \text{ for all lines } L \right\}$$

has $|\mathcal{C}| \geq q^{(1-\varepsilon) \cdot (q^m)}$, aka $\text{RATE}(\mathcal{C}) \geq 1-\varepsilon$.

\mathcal{C} is called a "LIFTED CODE."

Thm (Guo, Kopparty, Sudan)

$\forall m > 0, q = 2^t, \forall \varepsilon > 0, \exists \varepsilon' > 0$ s.t. the set

$$S = \left\{ f: \mathbb{F}_q^m \rightarrow \mathbb{F}_q \mid \begin{array}{l} f \text{ has degree } \leq (1-\varepsilon') \cdot q \text{ restrictions} \\ \text{to ALL lines} \end{array} \right\}$$

has $\dim(S) \geq (1-\varepsilon) \cdot q^m$

COR. $\forall \varepsilon, \alpha > 0, \exists \delta > 0$ and $\gamma > 0$ s.t. there exists a family of codes $\mathcal{C} \subseteq \mathbb{F}_q^n$ so that \mathcal{C} is a $(n^\alpha, \delta, \gamma)$ -LCC of rate $1-\varepsilon$.

(One can do a bit better than this: see [Kopparty, Meir, Ron-Zewi, Saraf, 2015].)

RECAP:

- RM codes have nice local structure
- They are LCCs with $Q = 2, \log(n), n^{\frac{1}{100}}$, although the rate gets bad.
- To get rate $1-\varepsilon$ with $Q = n^{\frac{1}{100}}$, we can "lift" RM codes.
- In general, there are TONS of open questions about LCCs!

QUESTIONS TO PONDER

- ① Can you show that k must be at least $n^{2+\varepsilon}$ for 3-query LCC's?
- ② Can you beat RM codes for $Q = \log(n)$?
- ③ Can you do anything with the Hadamard code when $S > \frac{1}{4}$?