

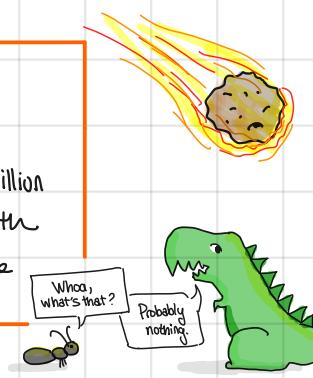
CS250/EE387 - LECTURE 15 - LOCALITY AND LISTS

AGENDA

- ① Motivation: Learning Boolean Fns
- ② Goldreich-Levin Algorithm
- ③ Local List Decoding.

TODAY'S ANT FACT

Ants have been around for over 140 million years, which means they cohabitated with dinosaurs and have survived multiple mass extinctions.



- ① RECAP. Last time we talked about LOCALLY CORRECTABLE CODES.

The basic principle was illustrated by the Hadamard Code:

$$\mathcal{H} = \{(\langle \omega, \alpha_1 \rangle, \dots, \langle \omega, \alpha_{2^m} \rangle) : \omega \in \mathbb{F}_2^m\}$$

The key was that $\forall i, \langle \omega, \alpha_i + \beta \rangle + \langle \omega, \beta \rangle = \langle \omega, \alpha_i \rangle$, so to locally recover $\langle \omega, \alpha_i \rangle$ we query $\langle \omega, \alpha_i + \beta \rangle, \langle \omega, \beta \rangle$, HOPE they are not corrupted, and add them together.

- ① MOTIVATION: LEARNING BOOLEAN FNS.

Suppose you have some Boolean function $G: \mathbb{F}_2^m \rightarrow \{-1, +1\}$.

Throughout this lecture, capital letters mean the range is $\{-1, +1\}$.
lowercase $g: \mathbb{F}_2^n \rightarrow \mathbb{F}_2$ have range \mathbb{F}_2 .

You have query access to G and you'd like to learn an approximation \hat{G} to G .

DEF: For $G: \mathbb{F}_2^m \rightarrow \{-1, +1\}^m$, the FOURIER TRANSFORM of G over \mathbb{F}_2 is $\hat{G}: \mathbb{F}_2^m \rightarrow \mathbb{R}$ given by

$$\hat{G}(\omega) = \frac{1}{2^n} \sum_{x \in \mathbb{F}_2^m} G(x) \cdot (-1)^{\langle x, \omega \rangle}$$

If you haven't seen this before, but have seen the Fourier Transform over \mathbb{C} , all the same things hold. In particular:

$$G(x) = \sum_{\omega \in \mathbb{F}_2^m} \hat{G}(\omega) (-1)^{\langle x, \omega \rangle}$$

$$\text{and: } 1 = \frac{1}{2^n} \sum_{x \in \mathbb{F}_2^m} G(x)^2 = \sum_{\omega \in \mathbb{F}_2^m} |\hat{G}(\omega)|^2$$

"Parseval's Thm"

so in particular the number of Fourier coefficients $\hat{G}(\omega)$ so that $|\hat{G}(\omega)| > \tau$ is $\leq \frac{1}{\tau^2}$.

Suppose we want to learn G from samples.

If the Fourier spectrum of G is "spiky," it suffices to estimate $y_\omega \approx \hat{G}(\omega)$ for all ω so that $|\hat{G}(\omega)| > \tau$.
Indeed, then we'd have

$$G(x) \approx \sum_{\omega: |\hat{G}(\omega)| > \tau} \hat{G}(\omega) (-1)^{\langle x, \omega \rangle} \approx \sum_{\omega: |\hat{G}(\omega)| > \tau} y_\omega \cdot (-1)^{\langle x, \omega \rangle}.$$

Turns out, we can estimate any particular $\hat{G}(\omega)$ from samples:

$$\hat{G}(\omega) := \frac{1}{2^m} \sum_x G(x) (-1)^{\langle x, \omega \rangle}, \quad \text{so choose a bunch of } x \text{'s at random, and estimate the sum.}$$

But we can't do this for all 2^m coeffs $\hat{G}(\omega)$, or else that takes $\Omega(2^m)$ samples - kinda dumb.
Instead we'll just do it for the big ones... but we need to know which those are.

GOAL. Given query access to $G(x)$ and a parameter $\tau > 0$, find a set S of size $\text{poly}(m)$
so that $\forall \omega \in S \quad |\hat{G}(\omega)| \geq \tau, \omega \in S$.

Now, $|\hat{G}(\omega)| \geq \tau$

$$\Leftrightarrow \frac{1}{2^m} \sum_{x \in \mathbb{F}_2^m} G(x) \cdot (-1)^{\langle x, \omega \rangle} \geq \tau$$

remember, $\in \{\pm 1\}$

$$\Leftrightarrow \frac{1}{2^m} \left(\left| \{x: G(x) = (-1)^{\langle x, \omega \rangle}\} \right| - \left| \{x: G(x) \neq (-1)^{\langle x, \omega \rangle}\} \right| \right) \geq \tau$$

$$\Leftrightarrow \frac{1}{2^m} \left(2 \left| \{x: G(x) = (-1)^{\langle x, \omega \rangle}\} \right| - 1 \right) \geq \tau$$

$$\Leftrightarrow \frac{1}{2^m} \left| \{x: G(x) = (-1)^{\langle x, \omega \rangle}\} \right| \geq \frac{1}{2} + \frac{\tau}{2}$$

$$\Leftrightarrow \frac{1}{2^m} \left| \{x: g(x) = \langle x, \omega \rangle\} \right| \geq \frac{1}{2} + \frac{\tau}{2} \quad \text{where } G(x) = (-1)^{g(x)}, \text{ aka, } g(x) = \begin{cases} 0 & G(x)=1 \\ 1 & G(x)=-1 \end{cases}$$

$$\Leftrightarrow \delta(g, l_\omega) \leq \frac{1}{2} - \frac{\tau}{2}, \quad \text{where } l_\omega(x) = \langle x, \omega \rangle \text{ and } (l_\omega(x_1), l_\omega(x_2), \dots, l_\omega(x_{2^n}))$$

is a Hadamard codeword!

NOTE: We'll lose the $|\cdot|$ in the GOAL for simplicity. By repeating whatever we come up with for $-G$, it will be fine.

New GOAL. Given query access to a received word $g: \mathbb{F}_2^m \rightarrow \mathbb{F}_2$, find all the Hadamard codewords $(\langle w, x_1 \rangle, \dots, \langle w, x_{2^m} \rangle) = (\ell_w(x_1), \dots, \ell_w(x_{2^m}))$ so that $\delta(g, \ell_w) \leq \frac{1}{2} - \varepsilon$.

That is, we'd like to LIST DECODE the Hadamard Code... in SUBLINEAR TIME!

NOTICE: $\text{Dist}(\text{Hadamard Code}) = \frac{1}{2}$ (relative), so we can only uniquely decode up to radius $\frac{1}{4}$.
 You showed this on HW1.

But we could hope to list-decode up to $\frac{1}{2}$. In this case, the Johnson radius is $J_2(\frac{1}{2}) = \frac{1}{2} \left(1 - \sqrt{1 - 2 \cdot \frac{1}{2}}\right) = \frac{1}{2}$, so we know that the list size isn't too big.

② GOLDRICH-LEVIN ALG.

To warm up, let's do it for $\frac{1}{4}$:

We also know this from the argument with Parseval's Thm earlier.

ALG 0.

Input: query access to $g: \mathbb{F}_2^m \rightarrow \mathbb{F}_2$, a parameter ε .

Output: The $w \in \mathbb{F}_2^m$ s.t. $\delta(g, \ell_w) \leq \frac{1}{4} - \varepsilon$, w/ prob $\geq 99/100$.

Draw $\beta_1, \dots, \beta_T \in \mathbb{F}_2^m$ uniformly at random.

For $i=1, \dots, m$: Set $T = O(\frac{m}{\varepsilon^2})$

For $t \in 1, \dots, T$:

Set $\tilde{w}_i(\beta_t) = g(e_i + \beta_t) + g(\beta_t)$
 $\tilde{w}_i \leftarrow \text{MAJ}(\tilde{w}_i(\beta_t))$

RETURN $\tilde{w} = (\tilde{w}_1, \tilde{w}_2, \dots, \tilde{w}_m)$

Notice this alg makes $T(1+m)$ queries:
 $g(\beta_t)$ for $t=1, \dots, T$
 $g(\beta_{t+e_i})$ for $t \in [T], i \in [m]$

We saw something like this last time.

Why does this work? As we've seen before:

$$\begin{aligned} \mathbb{P}\{\tilde{w}_i(\beta) \text{ is incorrect}\} &\leq \mathbb{P}\{\text{either } g(e_i + \beta) \text{ or } g(\beta) \text{ were in error}\} \\ &\leq \left(\frac{1}{4} - \epsilon\right) + \left(\frac{1}{4} - \epsilon\right) \\ &= \frac{1}{2} - 2\epsilon. \end{aligned}$$

$$\mathbb{P}\{\text{More than } \frac{1}{2} \text{ of the } \tilde{w}_i(\beta) \text{ are incorrect}\}$$

$$\begin{aligned} &= \mathbb{P}\left\{\frac{1}{T} \sum_{t=1}^T \left[\mathbb{I}\{\tilde{w}_i(\beta) \text{ incorrect}\} - \left(\frac{1}{2} - 2\epsilon\right) \right] > 2\epsilon \right\} \\ &\leq \frac{\frac{1}{T^2} \sum_{t=1}^T \mathbb{E} \left(\mathbb{I}\{\tilde{w}_i(\beta) \text{ incorrect}\} - \left(\frac{1}{2} - 2\epsilon\right) \right)^2}{(2\epsilon)^2} \quad \text{by Chebyshev} \\ &= \frac{1}{T \cdot 4\epsilon^2} \cdot \left(\frac{1}{2} - 2\epsilon\right) \left(\frac{1}{2} + 2\epsilon\right) \\ &= \frac{(1 - 16\epsilon^2)}{T \cdot 16 \cdot \epsilon^2} \\ &\leq \frac{1}{100m} \quad \text{if we choose } T = \Theta\left(\frac{m}{\epsilon^2}\right). \end{aligned}$$

Now union bound overall i and win.

OK, but now we want to do it up to $\frac{1}{2} - \varepsilon$, not $\frac{1}{4} - \varepsilon$.

Suppose we had access to a magic genie who will just tell us the correct value $\langle w, \beta_j \rangle$. But we can only ask the genie for T values.

ALG 1.

Input: query access to $g: \mathbb{F}_2^m \rightarrow \mathbb{F}_2$, a parameter ε , and a magic genie.

Output: An $w \in \mathbb{F}_2^m$ s.t. $\delta(g, l_w) \leq \frac{1}{2} - \varepsilon$, w/ prob 99/100.

Set $T = O(\frac{m}{\varepsilon^2})$

Draw β_1, \dots, β_T uniformly at random.

Ask the genie for b_1, \dots, b_T so that $b_i = \langle w, \beta_i \rangle$

For each $i = 1, \dots, m$:

For $t \in 1, \dots, T$:

Set $\hat{w}_i(\beta_t) = g(e_i + \beta_t) + b_t$
 $\hat{w}_i \leftarrow \text{MAJ}(\hat{w}_i(\beta_t))$

RETURN $\hat{w} = (\hat{w}_1, \hat{w}_2, \dots, \hat{w}_m)$

This only makes $T \cdot m$ queries.

Now, the same argument works:

$$\begin{aligned} \mathbb{P}\{\hat{w}_i(\beta_t) \text{ is incorrect}\} &= \mathbb{P}\{g(e_i + \beta_t) \text{ incorrect or the genie lied}\} \\ &= \mathbb{P}\{g(e_i + \beta_t) \text{ incorrect}\} \quad (\text{because genies don't lie}). \\ &\leq \frac{1}{2} - \varepsilon, \end{aligned}$$

so everything goes through as before.

The problem: WE DON'T HAVE A GENIE.

ALG 2.

Input: query access to $g: \mathbb{F}_2^m \rightarrow \mathbb{F}_2$, a parameter ϵ ,

Output: A list of $w \in \mathbb{F}_2^m$ s.t. $\delta(g, l_w) \leq \frac{1}{2} - \epsilon$, w/ prob 99/100.

Initialize $S \leftarrow \emptyset$

For each $(b_1, \dots, b_T) \in \mathbb{F}_2^T$:

define $\text{GENIE}_{b_1, \dots, b_T}(t) = b_t$

Run ALG 1. using this genie to obtain w

Add w to S .

RETURN S

Why is this a good idea?

- If $\delta(l_w, g) \leq \frac{1}{2} - \epsilon$, then $\exists b_1, \dots, b_T (= \langle w, \beta_1 \rangle, \dots, \langle w, \beta_T \rangle)$ so that ALG1 returns w . Thus w ends up in the list S .

Why is this a bad idea?

$$\cdot |S| = 2^T = 2^{O(m\epsilon^2)} \geq |\mathbb{F}_2^m|.$$

- But $S \subseteq \mathbb{F}_2^m$ was supposed to be a small subset.

To fix this, we will use a PSEUDORANDOM genie.

To see what this means, consider the following way of picking the β 's.

- Choose $\beta_1, \dots, \beta_\ell$ randomly in \mathbb{F}_2^M [and let $\ell = \log(T)$]
- For $A \subseteq [\ell]$, define $\beta_A := \sum_{i \in A} \beta_i$
- Now I have $2^\ell = T$ different values of β .

CLAIM. $\{\beta_A : A \subseteq [\ell]\}$ are PAIRWISE INDEPENDENT.
aka, for any $A \neq A'$, β_A and $\beta_{A'}$ are independent.

Proof.

$$\beta_A = \beta_{A'} + \sum_{t \in A \Delta A'} \beta_t = \text{something uniformly random and indep. from } \beta_{A'}$$

uniformly random and independent from $\beta_{A'}$

- Notice that our correctness argument before never used the fact that the β_i were fully independent: for Chebyshev we only needed pairwise independence.
- So ALG1. works just fine with these β 's!

ALG 3.

Input: query access to $g: \mathbb{F}_2^m \rightarrow \mathbb{F}_2$, a parameter ϵ , and a magic genie.

Output: An $w \in \mathbb{F}_2^m$ s.t. $\delta(g, l_w) \leq \frac{1}{2} - \epsilon$, w/ prob 99/100.

Draw β_1, \dots, β_l uniformly at random, $\leftarrow l = \log(m/\epsilon^2) + O(1)$

Ask the genie for b_1, \dots, b_l so that $b_i = \langle w, \beta_i \rangle$.

For $A \subseteq [l]$, let $\beta_A = \sum_{t \in A} \beta_t$, let $b_A = \sum_{t \in A} b_t$.

For each $i = 1, \dots, m$:

For $A \subseteq [l]$:

Set $\tilde{w}_i(\beta_A) = g(e_i + \beta_A) + b_A$
 $\tilde{w}_i \leftarrow \text{MAJ}(\tilde{w}_i(\beta_A))$

RETURN $\tilde{w} = (\tilde{w}_1, \tilde{w}_2, \dots, \tilde{w}_m)$

This alg makes $T \cdot m$ queries.

Notice that if the genie is correct about b_1, \dots, b_l , then $\langle w, \beta_A \rangle = \sum_{t \in A} \langle w, \beta_t \rangle = \sum_{t \in A} b_t = b_A$, so the genie is correct about $b_A \forall A \subseteq [l]$.

This alg. is correct for exactly the same reason as before, since the β_A are pairwise independent.

ALG 4 (GOLDRICH-LEVIN)

Input: query access to $g: \mathbb{F}_2^m \rightarrow \mathbb{F}_2$, a parameter ϵ ,

Output: A list of $w \in \mathbb{F}_2^m$ s.t. $\delta(g, l_w) \leq \frac{1}{2} - \epsilon$, w/ prob $99/100$.

Initialize $S \leftarrow \emptyset$

For each $(b_1, \dots, b_\ell) \in \mathbb{F}_2^\ell$:

define $\text{GENIE}_{b_1, \dots, b_\ell}(t) = b_t$

Run ALG 3 using this genie to obtain w

Add w to S .

RETURN S

We have basically already proven:

THM. The Goldreich Levin algorithm makes $\text{poly}(m/\epsilon)$ queries to g and returns a list $S \subseteq \mathbb{F}_2^m$ of size at most $\text{poly}(m/\epsilon)$ so that, $\forall w \in \mathbb{F}_2^m$ with $\delta(l_w, g) \leq \frac{1}{2} - \epsilon$, $\mathbb{P}[w \in S] \geq 99/100$.

Informal
COR.

(KUSHLEVITZ- MANSOUR)

If $G: \mathbb{F}_2^m \rightarrow \{\pm 1\}$ is a Boolean function, then we can estimate

$$\hat{G}(x) \approx \sum_{w: |\hat{G}(w)| > \tau} \hat{G}(w) \cdot (-1)^{\langle x, w \rangle}$$

using $\text{poly}(m/\tau)$ queries, w.h.p.

③ LOCAL LIST DECODING.

What we just saw was a LOCAL LIST DECODING ALGORITHM.

DEF. $C \subseteq \Sigma^n$ is (Q, ϵ, L) - LOCALLY LIST DECODABLE if:

There is a randomized algorithm \mathcal{A} , that outputs at most L other algs B_1, \dots, B_L so that:

• $\forall i \in [L]$, B_i : takes an input $j \in [n]$, uses at most Q queries to $g \in \Sigma^n$.

• $\forall g \in \Sigma^n$,

$\forall c \in C$ w/ $\delta(c, g) \leq \epsilon$, $\exists i$ s.t. $\forall j \in [n]$:

$$P\left\{ B_i(j, \text{access to } g) = c_j \right\} \geq \frac{2}{3}$$

Think of each B_i as a different genie.

In the previous example, the B 's were indexed by $(b_1, b_2, \dots, b_L) \in \mathbb{F}_2^L$:

GENIE $B_{(b_1, b_2, \dots, b_L)}$ (query access to g , eval pt α):

$$l \leftarrow \log(1/\epsilon^2) + O(1)$$

For $A \subseteq [L]$:

$$\tilde{w}_\alpha(\beta_A) = g(\alpha + \beta_A) + \sum_{j \in A} b_j$$

$$\tilde{w}_\alpha \leftarrow \text{MAJ}(\tilde{w}_\alpha(\beta_A) : A \subseteq [L])$$

RETURN \tilde{w}_α

NOTE: This is not quite the same as in our Goldreich-Levin version, since that was supposed to recover all of w , and this just guesses $\langle w, \alpha \rangle$. But the idea is the same.

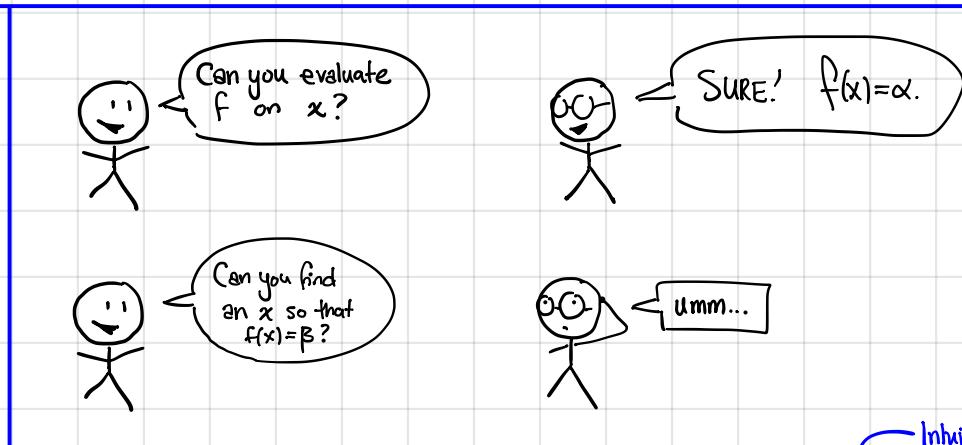
The reason we bother to give LOCAL LIST DECODING a name is because it has many applications. We've already seen one in learning theory, and here's another:

④ PRGs from OWFs

(This is what Goldreich + Levin were interested in).

WARNING: This will be extra handwavy.

"DEF." A ONE-WAY FUNCTION (OWF) is a function that is easy to apply by hard to invert.



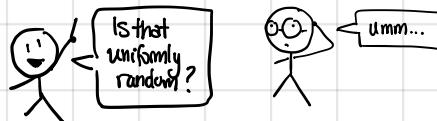
- We don't know if OWFs exist. In fact, $\exists \text{OWF} \Rightarrow P \neq NP$.
- But there are several candidates: factoring, discrete log, etc.
- And if a OWF exists, we can do some cool things with it.

Intuitively, a OWF gives a problem that's hard to solve but easy to check, and that's what $P \neq NP$ means.

"DEF" PSEUDORANDOM GENERATOR.

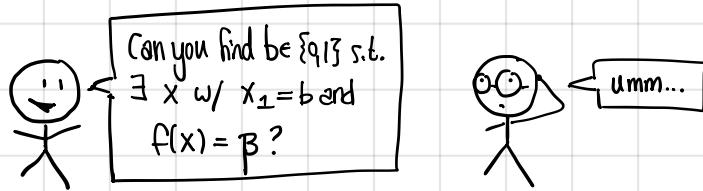
A PRG has output that is not very random, but is computationally difficult to distinguish from uniform.

short seed \rightarrow PRG \rightarrow long pseudorandom sequence

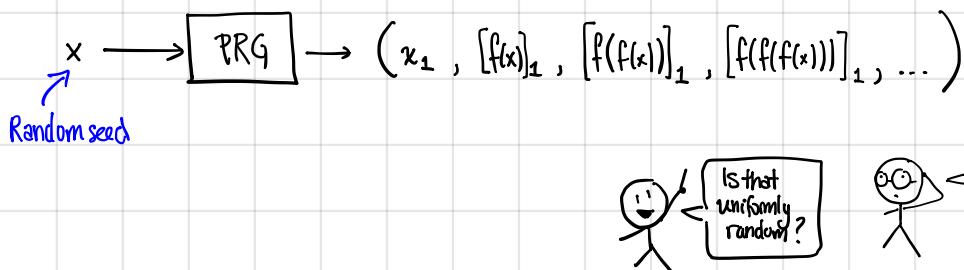


We might try to make a PRG from a OWF as follows:

- Say f is a OWF, $f: \mathbb{F}_2^k \rightarrow \mathbb{F}_2^k$ Technically, f should be a ONE-WAY PERMUTATION.
- SUPPOSE that this also means that it's hard to guess x_1 given $f(x)$. $(*)$

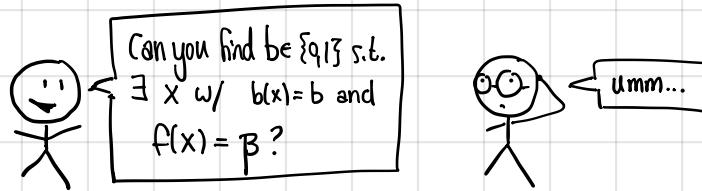


- Now consider the PRG :



- Turns out this is a good PRG, assuming $(*)$.
- But there is no reason $(*)$ should be true.

“DEF” A HARDCORE PREDICATE $b(x)$ for $f(x)$ is a function $b: \mathbb{F}_2^k \rightarrow \mathbb{F}_2$ so that it's hard to guess $b(x)$ given $f(x)$.



So in order to get PRGs from OWFs, we want a hardcore predicate for our OWF f .

In fact, we get this from the local list-decodability of the Hadamard code.

"CLAIM." Let $f: \mathbb{F}_2^m \rightarrow \mathbb{F}_2^m$ be a ONE-WAY PERMUTATION.

Then it's hard to guess $\langle \alpha, x \rangle$ given $f(x)$ and α .

aka, for all $\alpha \in \mathbb{F}_2^m$, $\langle \alpha, x \rangle$ is a hardcore predicate for $f: (x, \alpha) \mapsto (f(x), \alpha)$.

"pf." Suppose there were some alg \mathcal{Q} so that

$$\Pr_{\alpha} \left\{ \mathcal{Q}(\alpha, f(x)) = \langle \alpha, x \rangle \right\} \geq \frac{1}{2} + \epsilon. \quad \text{Aka, } \mathcal{Q} \text{ has just a slight advantage.}$$

Then I can get query access to $g(\alpha) := \mathcal{Q}(\alpha, f(x))$, which is a very noisy version of a Hadamard codeword.

Now I can use my local list-decoding algorithm to obtain a list \mathcal{L} of $O(1/\epsilon^2)$ possible x 's.

Then I compute $\{f(x) : x \in \mathcal{L}\}$, find x s.t. $f(x) = \beta$, and return it.

So f is easy to invert after all!

QUESTIONS to PONDER

- ① Can you locally list decode $\text{RM}_q(m, r)$ for $r < q$?
- ② Can you learn Fourier-sparse fns from $\text{poly}(\frac{m}{\epsilon})$ RANDOM queries?
- ③ Can you think of other applications of local list decoding?