
(S250/EE387 - LECTUREIS-LOCALITY AND LISTS

ENDA TODAY'S ANT FACT *
⑦ Motivation : Learning Boolean fas Antshave been around for over 120 million

years ,
which means they cohabitated with

② Goldreich-Levin Algorithm dinosaurs and have survived multiple

③ Local List Decoding .

mass extinctions. &
⑧ RECAP

.

Last time we talked about LOCALLY CORRECTABLE CODES.

The basic principle was illustrated by the Hadamard Code
:

7) = Ekw ,
x ,
)

, . .

.,
(w

, xym)) : wem3

The key was that Vi
,
(w

, xi +B) + (w
,> = (w

,
di)

,
so to locally recover (w, <:)

we guery <w
, xi +B), <W

,B), HOPE they are not corrupted ,
and add them together

① MOTIVATION : LEARNING BOOLEAN FNS
.

~
Throughout this lecture, capitalettersmeantherange isa

Suppose you
havesome Boolean function G :*-> [+, + 3.

You have guery access to G and you'd like to learn an approximation 10 G.

#SoForm
of Gow is: givena

If you haven't seen this before,
but have seen the FourierTransform over D

,
all the same

things hold. In particular :

G(x) = [G(w)(-1)(x ,
2)

and : 1 = c[xGevasT
wer

so in particular the number of fourer coefficients(0) so that G(w) I is - "E.

Suppose we want to learn G from samples.

If the Fourier spectrum of G is "spiky ,

" it suffices to estimate you G(w) for all w so that Elk[

.

Indeed
,
then we'd have

G(x)(w)wYwE
Turns out

,
we can estimate anymicular(w) from samples:

& (w) := [G()(1)
*)

,
so choosea bunch of x's at random

,
andestimate the sum .

But we can't do this forall I coefs C(w)
,

or else that takes -f(2) samples - kinda clumb.

Instead we'll just do it for the big ones... but We need to know which those are

concrivenquercetapaparameter, find
set S of size polya-

NOTE: We'll losethe 11 in the GOAL for

Now
,
G(u) I simplicity.By repeating whatever we

~
remember

,
e[= 13

come up with for -G ,
it will be fine.

=>G(· (1) ,2)

= (((x : G(x) = (1)(x ,2)3) - ((x : G(x) + (- 1)
*23)-5

=> i (2/5x : G(x = (1)(x ,w)]) -1)
= in (Ex : G(x) = (/)(x ,>3) = 2 +z

= n((x : g(x) = (x,w)]) + 42 where G(x) = (-1)8'aka
, g(x) =S

=s S(g , (w) - z-2
,

where (w(x) = (x
,
w) and ((w(x) , (w(x2)

,
. . -

, (w(x2)
is a Hadamard codeword !

#vegedwalla
That is

,
we'd like to LIST DECODE the Hadamard Cod... in SUBLINEAR TIME !

- creativel Y

Cist(HudmardCock)
= E

,
so we can only weightly decode uploading

inYou showed this on HW1.

But we could hope to list-decode up to2 .

In this case
,
theJohnson radius is

Jz(z) = 2(1-2) = I
,

so we know that the list size isn't to big .

↑
We also know this

② GOLDREICH-LEVIN ALG from the argument
with Parseral's Thm

To warm up,
let's do it for : earlier

.

ALG :0
.

Input: query access /o
g:F

->#2
,

a parameter a

Output : the wez" c .t . S(g , (w) -> * - &
, w/prob :99/00.

Draw B, ...,By e Fa uniformly at randum.

For i= 1, ..., m : ~ Set T= 0 (m/ga)ElFor te 1
, ..., T :

Set wi(B)) = g(ei+ B) +g()
= MAJ(wilBel)

Notice this aly makes T(1 + m)

RETURN = (W,, . . .

, wm
queries : g(Bt) for t = 1, ...,

T

g(B + +ei) for teCT]
,

ic [m]

We saw something likethis last time.

Why does this work ? As we've seen before :

PSwi(p) is incorrect 3 = Pleither glei +B) or g(p) were in error3
-> (i - z) + (i - c)

= - 25
.

PS More than of the wilp) are incorrect ?

= PC #[AS wilB) incorrect 3 - (2 - 23) < 22]

=[IE (15 WilB) incorrect) - li-23))" by Chebysher
(22)2

=42 - (k - 2)(z +2)

=

= YOOm ifwe choose T= G (m/gz).

Now union bound overall ; and win.

OK, but now we want to doituplo - 3
, not - 3.

Suppose we had access to a magic genie who will just tell us the correct value(w,j).
But we can only askthe genie for Tvalues.

-

~
at T= O(m/(z)nAsk the genie for b,, by so that bi = (w, Bi)

For each i= 1
, ..., M :

For te 1
, ..., T :

Set wi(B)) = g(ei+ B1) + De
= MAJ(wilBel)

RETURN = (W,, . . .

, wm Thisaly makes Fin queries.

Now
,
the same argument works :

PS wi (B) is incorrect 3 = PS glei + pe) incorrect or the genie lied 3

= PS glei + et) incorrect 3 (because genies don't lie)

t - 3
,

so everything goes through as before.

The problem : WE DON'T HAVE A GENIE

ALG 2
.

-

Input: query access /o
g:F

->#2
,

a parameter as

Output : A list of wer" st . S(g , (w) ** -E
, w/ prob 99/100.

Initialize S&
For each (b, --.

, b) E #zT :#define GENIEb
,

-

, b
+

(t) = be

Run ALG1
. using this genie to obtain w

Add w to S.

RETURN S

Why is this a good idea?

· If S(lw , g) = E-e
,
then 7 bi- b+ (= (w , p ,

)
. . -

.,
(w

, BT)
so that ALG1 returns w

.
Thus wends up in the list S.

Why isthisa babidea?

· (S) = 2 = 20(m2) = (f)
.

· But S-F was supposed to be a small subset.

To fix this, we will use a PSEUDORANDOM genie.

To seewhat this means , consider the following way of picking the B's
· Choose B , , ..., Be randomly in Fr

*

Cand Let 1 = log(T)

· Fur A[12
,
defre BA:= Bi

· Now I have 21 =T different values of B.
· CLAIM .TAarPWSEINDEPENDENT-

,

-

un=Bangniflyrandomand
Notice that our correctness argument before never used the fact that
the B: were fully independent : for Chebyshev we only needed pairwise independence.

So ALG1
.

worksjust fine with these B's !

ALD3
.

C

Fleach i= 1
, ..., M :

Set Wi (BA) = g(ei+ B) + ba

RETURN = (W,, . . .

, wm Thisaly makes Fin queries.

Noticethat if the genie is correct about bi-s be ,
then (w, BA)=w

Sothegenie is correct about bat ACe] .

This alg. is correct for exactly the same reason as before
,
since the BA

are pairwise independent.

ALG 4 (GOLDREICH-LEVIN)
-

Input: query access /o
g:F

->#2
,

a parameter as

Output : A list of wer" st . S(g , (w) ** -E
, w/ prob 99/100.

Initialize So = set l= log(m((z) + 0(t)

For each (b, ---

,bee
:#define GENIEb, - be
(t) = b

+

Run ALG3 using this genie to obtain w
Add w to S.

RETURN S

We have basically already proven :

Igimme Pomaguerestoge
Informal
COR

. (KusHILEVITE-MANSOUR)
-

IfC :F -> EE73 is a Boolean function
,
then we can estimate#N&(x)E

using poly(M/z) queries, whp.

&3) LOCAL LIST DECODING

What wejust saw was a LOCAL LISTDECODING ALGURITHM.

DEF
.

-

sothat :

T· Vgz[,Yce2yf(g) = 2 ,

Si s . t . Fjen] :

#C Bi(jacesslog) = 43 =

Think of each Bi as a different genie.
In the previous example ,

the B's were indexed bybz , --sb).#z :

GENIE B
(b

, be
, ...,be)

(guey access tog ,
eval ptd) : NOTE : This is notquite-

l+10y)1(2) + 0(z) Goldreich-Levin version
,/

Thesame as in our

since that was supposed

wa(Ba) = g(x + BA) + b to recover all of w
,

and this

= MAJ) Wa(BA) : A zsez) just guesses <w,
<). But

>

RETURN Wa the idea is the same.

The reason we bother10 give LOCAL LIST DECODING a name is because it has
many

applications. We've already seen one in learning theory ,
and here'sanother :

4 PRGsfrom OWFs (This is what Goldreich + Levin were interested in).

WARNING : This will be extra handwarey
.

AONE-WAY FUNCTION (ONf) is a function that is easy to apply by hard toinvert.

#D
↓

~ Intuitively,aOwgiveSerd
· We don't know if OWFs exist

.

In fact
,

JOWF = PFNP. to solve but easy
to check

,
and that's

what PENP
means.

· But there are several candidates : factoring ,
discrete log, ,

etc.

· And if a OWF exists
,

we can do some cool things with it.

"DETPSEDORANDOM GENERATOR.
-

APRG has output that is not very random
,
but is computationallydifficult 10 distinguish from uniform.

-↳m

We might try to make a PRG from a OWF as follows :

· Say f is a OWF
,
fith Technically ,

f should be a ONE-WAY PERMUTATION

· suppose that this also means that it's hard toguess = given f(x) .
(x)

&has
Now consider the PRG :

Y -ITB
-> (x1

, (f(x)= , (f(f(x)))=,
(f(f(f(x)))]

+)
Randomseed

⑳
Tums out this is a goodPRG , assuming (*)
· But there is no reason (*) should be true.

-HARDCOREDREDEbf(x)
is a function D:#-o as

P
So in order to get PRGs from OWFs

,
we want a hardcore predicate for our OWF f

In fact , we get this from the local list-decodability of the Hadamard cude.

-

"CLAIM."
-

ListY : (d + (f)

Supposethere were some als O sothat
PSQ(a ,

f(x) = (,x)] + E
.

Aka
,
Q has justa slight advantage

Then I can get query access to g(x) := Q(, f(x)) ,
which is a very noisy version

of a Hadamard codeword.I I

X

↑Now I can use my local list-decoding algorithm to obtain a list 2 of 0("E2)
possible X's.

Then I compute [f(x) : xc 23
,
find x st . f(x) =

B ,
and relum it.

↓So fis easy 10 invert after all!

QUESTIONS I PONDER

① Can you locally list decode RMg(m .
r) for rag

?

⑦ Can
you learn Fourier-sparse fus from poly(m/) RANDOM queries

?

③ Can you think of other applications of local list decoding ?

