
CS250/EE387 - LECTURE 2- Linear Codes and Finite Fields.

GENDA TODAY'S ANT FACT:

⑳ RECAP from LAST TIME The trap jawant can close its

e LINEAR ALGEBRA over 50 , 13
? jaws at 140 milesperhour!

e FINITE FIELDS By biting at the ground ,
this

f LINEAR CODES allows them to do backflips !

- gpommel horse!

⑳ Recall all this notation wehad from last time

:

n : block length
k :

message length (k
=n)

d : distance (d =n)

C : alphabet

A CODE is a subset 2 = E.. Its elements are called CODEWORDS.

If IC1
: 121"

,
the RATE of C is k/n

.

QUESTION from lasttime:

-

What is the best trade-off between rateand distance?

(Still open!)

In particular, recall EXAMPLE3 from last time:

#getX4s Nex+ Xpmod2
,

X+ Xy+xpmod, X+C := Image(ENC).

C is a binary code of length 7, message length 4, distance3,

rate R=4/7.

We
say
it is a (7,32 code.

ukdx
,5) -



We called thisthe HAMMING CODE coflength7) and we saw that it was

optimal in that itmet the HAMMING BOUND
-Recall

HAMMINGBOUND

We also came up(ort of) with a #Cute=

-Voll
decoding algorithm for this code :

Algorithm Sketch: whichfollowedfromthefactthatna
View the code

[
like this :

·

Then identify which circles don't sum to 0 (mod2) and flip the

unique
bit that ameliorates the situation.

We waved our hands at how this sort of argument
can also show that the distance

is at least 3.

But this was all a bit unsatisfying
.

While clever
,
this construction feels a bit ad hoc.

How can we generalize
this construction?

How can we generalize this algorithm/
distance

argument
?

Todaywe'll see an important framework in coding theory , That of
LINEAR CODES
,

which will help us put this example
in context.



DE So far we've mentioned the Hamming model , Hamming bound,
Hamming distance, Hamming

balls
,
and Hamming codes.

Who wasthis

guy Hamming
?

Richard Hamming (1915-1998) was working at Bell
labs

starting
in

the late 1940's
,
where hewas colleagues

with Claude Shannon

(of the "Shannon model" which we also mentioned).

Hammingwas working on old-school computers (calculatingmachines)
,
and

they
would

return an error if even one Dit was entered in error.

This was extremely frustrating ,
and inspired Hamming to study

this

rate-vs-distance
question,

and to come
up
with

Hamming
codes.

d LINEAR ALGERRA over 50 , 13 ?

EXAMPLE 3 (fromnow on
,
THE HAMMING CODE) has a really nice forms

-mod
ENC : (X,

,
Xc

,
Xs

,
Xp)1> (X,

,
Xz

,

X3
,

Xp
,
Xz+ Xz +Xp

,
X

,
+X3+Xp ,

X, +x2+x4)
ENC: +> (*

,
some linear frof x (mod2)

.

aka
,

we can write this as # GX (mod2)
,

where G is somematrix.

(mod2)ENC(x)

=-
G

NOTE : Somepeople write

G is called a GENERATOR MATRIX.

F =-

SUPPOSE FORNow that "linearalgebra
worksmod 2.

"

aka
,
G is short and fat.

Then this view is pretty useful
.

- I In this class
, generatormatrices are

tall and skinny
.



Why is this a useful way to look at things
?

Let us pretend that linear algebra "works" moda
,

and see what we can do.

LINEARCODES

Chas a

very
nice property : it is closed underaddition : if ceC

,

deC
,
then codel.

±mod2
±mod 2

This view makes that
very

clear :

# +F = En x+x

I --

C C' also in C

Aka
,
C =

span (cols(G) is a LINEAR SUBSPACE
,
of DIMENSION4.

us
VERY
If C is LNEAR

,
then distance(2) =minut (C)

.

Indeed
,
A (GX ,GX)= A(G(x-x)

,0)
OBSERVATION

= wt(G(x-x))
.

-HARITYCHECK MATRICES.
±

This can

makeitmuch

The other
way

we looked at this example wasi
understand

easierto

thedistance.

We observed that all the circles summed to 0 mod2 .

Another
way

of writing
that :

C

Green Circle's Constraint- >

Blun CirclesConstructed
Red Circle's Constraint-

-

³

I
mod 2.

C4 O

(5

C

Cz

Aka
,
cel => He = 0

.

(mod2)

Aka
,

C = Ker(H)
.

ESTION : Does C= Ker(H) ?



ANSWER YES ,

C = Ker(H)
.

Is
a

- dim(colspun(G1)= 4

Why
? Dimension counting

! dim(C) =
4

. since the
identitymatrix

G
is just sitting

there.

· dim (Ker(H)) = F- dim(rowspan(H)) = 7
-3 = 4

4
· So C = Ker(H)

,

and dim() = cim(KerlHil

,
=> C =

Ker(H)

H is called a. PARITY-CHECKmatrixofC. Again,
it's
easy

to see

dim(rowspan)H))=3

-MARITY-CHECKMATRICES are USEFUL. becauseof the identity
.

&
makes it easierto see the distance of C .

CLAIM : dist(C) =3

Proof :

As before
,
suffices to show Min wt(cl =

3.

ceC1503

But theneither one column of His O (NOPE)

or thesum of two columnsof It is O mod 2↳e- aka there is a repeated column (NOPE)

SofceC
,

wt(c)= 3.

Now
,
the codeword

e It gives us a nice decoding algorithm.

Sameuzz
PuzzLE : Given 5 = 0111010 which has suffered one bit flip ,

what is c
?

as last time.



Solution to PUZZLE : Write Y = C + ERROR
rectorwhich hasa

T

·

mod 2

I
o

Io=cumHz is called the

"Syndrome.

"

Sincet
is the 3 column ofH

,
the error occurred in position3 .

So this
gives us an efficient decoding alg

forC !

Thisis amuch nicer

way
of
seeing

our circle-based
algorithm .

"Whichcircles fail to sum to 1" is the same as "Whichbits of H(X+z) are I"
,

and it

picks out whichbit we needed to flip
.

THEPOINT SO FAR:

Iscuminthanearagebaworking moa



IHEQUESTION
: Does linear

algebra
makesense" over 20

,
13 mod 2 ?

(And what does that mean?

What's the problem?

Why
wouldn't it work ?

To see the(potential) issue, consider what happens for 20 ,
1

,
2

, 33 mod
4
.

NON-EXAMPLE (WARNING! FALSE STATEMENTS BELOW

Let G =

1
be a generator

matrix
,

mod
4
.

o 2

Define
.

2 =

[GxE0112 ,33 = colspanG

So dim(C) = 2. (The columns are not scalar multiples of

eachother
,

aka
, theyare linearly independent

But consider

O O

± T320 -

I

%
-Mu+y G (mod4)

And H
certainly seems to haverank 2 also.

(The rows are not scalar multiples of each other).

So then by the sameargument,
C = colspan(G) = Ker(H).

so 2 = dim(C) = dim (Ker(H) = 3 -dim(rowspun(H)) = 3-2 = 1
.

OH No !!



WHY WASTHIS A NON-EXAMPLE?

What went
wrong

? Linearalgebra doesnot "work" over 50 , 1 ,
2

,
33 mod 4
.

· In particular, several times in that examplewe said (something like
ASIDEen

make

nonzero Vectorsv and Ware linearly independent iff
There is no X s .

ti V = XW
.

-

E· Another definition of linear independence:

"nonzerovectors v and ware linearly independent if
There is no nonzero X

,,
x2 Sit. x

,
V + x2W

=
0.

· Over R
,
these arethe same:

Proof :

I
suppose -x1142 #0 sit . XV + XcW= 0. Then v =

W
Conversely,

if 7 X sit
.
V = &W

,
then choose xc= 4 ,*1= -1

and
x

,
v+ xzW=0 .

· But over 50 ,
1

,
2

, 33 mod 4,

these are not the same.

2.[ + 2

.- [T mod4
,³v w

even though v and ware not scalar multiples of each other.

· The Proof above breaks : What does (*2) mean
?

(3/2 mod 4 does not immediately make sense).

This does not bode well for algebraic coding theory
if even

linear algebra doesn't work...



e FINITE FIELDS

FORTUNATELY
,

all that stuff that we did mod 2 actually
was OK !

The difference between 50 ,
1
,

2
, 33 mod 4 and 50 , 13 mod2

is that 50 , 13 mod2 is a FINITE FIELD.

Informal definition of a field :

#TELDisanycutofelementsthatyoua ewantto

Formal definition of a field :

DEF A HELD # is a set of elements
, along with operations +, x

1 "Addition"and "multiplication") so that :

* X
, Y ,
zEIF :

· (ASSOCIATIVITY) (x +y) + z = x + (y +z)

I
(x +

y)
+ z = X +

(y
+ z)

· (COMMUTATIVITY) X+

y
=

y
+x

.
X x

y
=

y xX

E· (DISTRIBUTIVITY) ** (y + z) = (x +

y)
+ (x+z)

· (IDENTITIES) There is an element "O"and an element "1" so that

x+ 0 = x xe

X . 1 = x(xF

· (INVERSES) EXEFF
,
5

y st .
X+

y
=0 (Let's call thisy"-X")

Xx(Ã
, Jyst . X

-

y
= 1 CLet'scall this

y "*" or "X"")
X+0



Familiarexamples of fields : R
,
C.

A FINITEFIELD is a finite field
.

Caka
,

a field that is finite)
.

familiar example: 50
,
13 mod 2.

(Theonly thing
to check is the inverses : -O = 0

,

= 1
,
I= 1

. so we'regood!

Familiar non-example : 30 ,
1

,
2

, 33 mod 4
.

(2 has no multiplicative inverse : 0 . 2 = 0 There'sno
way

to get 1!)
1 . 2 = 2

2240 moa

"THEOREM :

"

Linear algebra "Works" over finite fields.

ENOUGH

There are some things that don't
Most notably , orthogonality doesn't mean what

you
think it means
.

Thevector (i) is orthogonal to itself over (50
, 13 mod 2) ! WEIRD.

Before we
go
into more details

,
WHEN DO FINITE FIELDS EXIST?

ARE WE STUCK IN So , 13 mob2?

#site
3

Proof
.

Exercise.
somepeople

Not
really

- I'll post somereadingif you
are

call it GF(pt).
GF stands for

interested
,

but if
you

arenot
you

can
"Galois Field"

take thisThi on faith. I mightusethis

sometimes.



#5= 50
,

1
,
2

,

3
,
43 mod 5

±

&

0 + 0 = 0

2+ 3 = 0

101 = 1

I
1+ 4 = 0

3 +2 = 0#impl-oa
More generally , #p = 50

,
1
, ..., p-1] modp

AMPLE #4 is NOT 50 , 1 ,
2

, 33 mod
4
.

Instead
,
it is 50 ,

1
, 8 ,823 ,

with :

U[1108ay 101882I IuV80 008821

jagaz
10

820 ja 1 y

FUN EXERCISE : Check that this satisfies all the axioms .

More
generally , Ept is NOT the same as 50

,

I
... pt-13 modept when t1

FUN EXERCISE : If you
haven'tseen finite fieldsbefore, proveboth ofthe"moregenerally" statements.



f LINEAR CODES

Now that we havethe appropriate language about finite fields, we can formally
definethethings wewere talking

about before withthe Hamming
code .

All the definitions
you

know a love for linearalgebra overR make sense over finitefields :

Let # be a finitefield. Then :

FUN EXERCISE :

[
· # =

((X,
- , Xe) : Xi 3

.

Checkthat
"

and

anysubspacVA
SUBSPACE VFw subset that is closed under addition "s scalarmultiplication.
-

over # (in the
aka
,
YuweV

,
VaeF

,

veweV
.

sense thatthey · Vectors Vs-
>Ve
#"
are

LWEARLY INDEPENDENT If FX
,, ..., Xt
Ef that

satisfythe

axioms ofa

are not all O
,
ZixiVi # 0.

Vectorspacethat

youknowance
· For

Vis-,
V+ #Y their SPAN is span (Vic--Vt) = [ExiVi : xie #3

-

read on Wikipedia:

· A BABS for a subspace VEF" is a collection of vectors VI
....
VEV sit.

Vector-space#Definition

- V
, ...,

Ve are linearly independent
- V =

Span(Vi ...ht) .

· The DIMENSION of a subspace V is the numberof elements in
any

basis of V.

± FUN EXERCISE : Provethat this is well-defined.

leg,
all bases havethe same size).

NEODoflengthensionover
Note : We have overloaded h (message length is dimension)

.

-

In fact this makes sense. If C is a Redimensional subspace over #
,

then

ICI = I*, fence k =

1091 /C
=

log ,< ,
/C) =

message length.
S

L

Why? Every ceC has a

unique representationas Divi for a basis is-I

That'slIFI" choices for the As



⑭His

alinearcode
s

werethemSpronounced "column span .

"

Proofof OBSERVATION: Choose the columns of G to be a basis ofC. of G

maso
:

, se
Note : There can be

many generator
matrices forthe same code.

&

They all describethe same code
,
but they implicitly describedifferent

encoding maps.
For

example,

·F and are both generate
matricesfortheHamming

code.E(FUN EXERCISE : Check
!

)

However
,

some generator
matrices

may
bemore usefulthan others.

For example, G above corresponds to a SYSTEMATIC encodingmap
.

Thismeans that Enca : (X,cX2
,XgXp)
n, Xp ,

SMFF).

The
message

shows
up

as the

G' still corresponds to a legit encodingmap,

firstpart of the codeword.

but it's not systematic.

DEF . If CEF2 is a linear code over
,
then C istheCODE

:

#
-

#Ever: (r,) =0Vc23
-

This is the standarddot product:

[v
,
e) =[Vici

Note: over finite fields
,
<-

-
> is not technicallyan "inner product" since we can have <x,

x)=0 for X + 0.

But I'm going to use the "Co,)" notation anyway.

FUN EXERCISE : Provethis.

=
If dim(C) = k

,
then dim(et) = n-k

.

(Justlikeover(R)
. /Given thatpass

and cimensionas



sin
over The

a2 = [c(" : Hc = 03 aka2 = Ker(H).

PROOF of OBSERVATION : LetIt be amatrix whose rows are a basis for Ct.

-

Income.

·



That's all for today
!

QUESTIONS
TO PONDER

d Does there always exist a generator matrix G so that G looks like the
If so, how would you find

it efficiently?

What about nonlinear codes? Is there always an encoding map so thata,
the

the
message

x
appears

as part of ENC(C)
?

rus
s

e How would
you

structurea linear code if
you
wanted to decode it

efficiently from LE) errors?

IWhat about generalizing
the

Hamming
codethat we saw?


