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e Efficiency
? There isa species of and named

f Detour : McEliece
cryptosystem

"Pheidole Harrisonfordi .
"

# Off to asymptopia
! I Yes

,
it is named after Harrison Ford.

d Gary entropy

h
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& Recap . Last time
,
we saw LINEAR CODES :

e
=G : xh] =

Ga
:

T±
Gisa GENERATORMATRIX

(i
PARITY-CHECKMATRIX.

· Linear
algebra works great

if Fg is a field.
· This is

super
useful.

Today: A few useful things
one can do with linear codes :

- GILBERT-VARSHAMOV BOUND

- McELIECE CRYPTOSYSTEM
.

Techn i ca l l y,this is a useful

thing you CAN'Tdowith

linear codes
.

combinatorial
(Plus

,
a few things you can't do with any

codes
,

usefulor otherwise)
.



⑪ The GILBERT VARSHAMOVBOUND

So far
,
wehave seen the HAMMINGBOUND

,

which is an

upper
bound on the rate of a code . Jaka

, an IMPOSSIBILITYRESULT).

We can match it for n = 7
,
k=4

,
butwhat about in general

?

Next
,
we'll seethe GILBERT-VARSHAMOV BOUND

,

which is a POSSIBILITY

RESULT
.

THM (GILBERT-VARSHAMOV)
-

and for
any
dan

,
there exists aecopipe, alphabetsize , distenced,andNOTE : Youcan remove the

R= 1 -Volg(d-
words "primepower" and

"linear" and the statement

is still true.

comparethis
to the Hammingbound, which said :

R = 1
-Volg())Theonlydieren an

We will talkmoreabout the relationship between these two later
,

but for now just notice that Rav < RHAMMING ,
so

math is not broken.

Wellprovethebound now-it'spretty assgeneral
OPEN

owthereexistpinary codesthatdobettera



I
called

the

Proof of the GV bound. PROBABILISTIC
METHOD.

#DEA
: A random linear codewill do the trick with probability -0 .

-

So
,
in particular, there exists a linear code that works!

⑳gLet C be a random subspace of #y , of dimension
keRBD

Let G be a random generator
matrix forC.

EFULFACT
: for

any
fixed XO

,
GX is uniformly random in Fg 1503.

1Informalproof : Becauseofall the symmetry, how could it beany other way?
formal proof: Fun exercise!

Now
,
dist(e) = min wt(c) = min wt(G .X)

ce21503 xlFg
*

1503

For
any given XtO, by the USEFUL FACT

,

PSwE(G - x) < d] = P Gx = B(0,d-)]

G. X total.
So by theunion bound,

·
Thus

,
we win as long as this is 1 . Tak inglogs

of both sides
,
wewin if



e EFFICIENCY ( ?)

· If C is linear
,
we have an efficient encoding map

X-> G .

X

The computationalcost is one matrix-rectormultiply

·

If C is linear with distance d
,
we can DETECT-d errors efficiently:

If O < wHeld-1andCeC
,
then H(c +e) = H .e + O

,
so

just check if H*0

· If C is linearwith distance d
,
we can

.
CORRECT -1 ERASURES efficiently:

We have

F7 n- (d-1) rows are

2
still OK

Because thedistance isa there isM exactly
one c'e#" that is consistent

G
c

with these equations ,
and hence

G' is full rank.

=> Solve this linear system
G'x = C' for X .

· If C is linear with distance d
,
can we ASIDE : Canwe still solve linear
-

CORRECT LEJ ERRORS

efficiently
?

I

systems efficiently over

finitefields? Sure !

T
· It worked for the (7 ,4, 3)2-Hadamard code

! All
your

favoritealgorithms
-

· But what about in general
?

Leg, Gaussian Elimination) only
need addition

,

subtraction,

multiplicationand division
,

so

tstill
works overFg



· Consider the followingproblem :

~liven es ,
andGefndx"st . A(GX ,

) is minimized

.

aka
,
find the codeword closest to a receivedword ?

· This problem (called MAXIMUM-LIKELIHOOD DECODING for LINEAR CODES

is NP-hard in general [Berlekamp-McEliece-vanTilburg1978] , even if
the code isknown in advance and

you
have an arbitrary

amountof

preprocessing
time [Bruck-Noar 1990

,
Lobstein 1990). It's even NP-hard

to approximate (within a constant factor)! (Arora-Babai-Stern-Sweedyk1993].

· Even computing theminimum distance of linear codes is
NP hard !

·This all sounds bad
,
but remember that NP-hardness is a worst-case

condition. There exist linear codes that are (probably) hard to decode , but

that doesn't mean that all of them are

· We will spend most of this class talking
about how to get efficiently-decodable

codes
.
But first let's see one application where the hardness isa good

thing

.

: Actually, it's not really clear what "NP hard" or "computational efficiency"
means here. (Besidesthe fact thatwe did not define them).

In particular, these notions make sense as the input size grows
.This

growing
? We'll come back to this in a moment.



f APPLICATION : McELIECE CRYPTOSYSTEM

Suppose that Alice and Bob want to talk SECURELY.

Now there is no noise
, justanAVESDROPPER

Eve.

Hi Bob !

My bank

o Y
password is Password1.

I ±
X x

EVE is

ALICE
BOB listening but is

not the intended

recipient

· In PUBLIC KEY CRYPTOGRAPHY
, everyone

has a public key and a private key.
· To send a

message
to Bob

,
Alice

encrypts
it
using

Bob's public key
.

·

Bob decodes itwith his private key .↳



-

HERE IS SUCH A SCHEME
, using binary linear codes :-

· Bob chooses: GeF" is the generator matrix for an (appropriate)

efficiently decodable binary linear code 2.-

we'llseesome soon
Y
say , decodablefrom t errors.

· Bob chooses: · A random invertible Se Ha

· A random permutation matrix Per
*

Scheme continued...

To decrypt Alice's message x +e :

Rxk

±To send a messageF to Bob :

· Alice chooses a random vectoreit with wt(e) = t

· Alice sends Bob x +e³
· Bob uses his efficient decoder for C to find S .X

· Bob computes X = S" . SX

Whymight this be secure
?

&

Suppose Eve sees &X +e.

She knows Gandt
,
so this problem is the same as decoding the

code =Gx(xe"3
from terrors. WEHOPETHIS IS HARD.

linearcodes is NP-hard ."

:
Decoding exte is hand for Evet is Not the sumers "Maximum likelihood

decoding
First

,
we havesome promisethat there were <t errors.

Second
,
NP-hardness is a worst-caseassumption: for crypto weneed an average-case assm

.

The assm that "Decoding
Exte is hard" (for an appropriatechoiceof G) is called

the MCELIECE ASSUMPTION
.

Some peoplebelieve it and some don't

lend[debour]



gF TO ASYMPTOPIA

We'll return to computational issues later- but first we need to talk

about what we mean by "for larger"
. So for now let's returnto the

combinatorial question
:

SofarmTHBEST
MADE-Off betwee RAT and DISTANCE

³
Gilbertamor

~ Hamming
1 - logg(ulg(d

- 1
, n)) -== Optimalk/m * 1-t-logg (Volg(() , n))

for 121 =
g

So for particular d , k , n , these tell us something ... but what do they
tell us in general

? And what does "in general" mean
?

We are
going

to think about the following limitingparameter regime
:

MID-> - so that ETR and -> G approach constants
.

Motivations :

11) Itwill allow us to betterunderstand what's possibleand what'snot

(2) In
many applications,

n
.

G
.barepretty large and R

.
S are thethings we

want to be

thinking
about.

(3) It will let us talk meaningfully frigorously
about computational complexity

.



A
-

-

Section=The RAT of Cis RIC)
:=in

kini

The RELATIVEDISTANCE of Cis S(2) :

=
findin

NOTES :

· Wewill frequently abuse notation and refer to C as a "code
,

"

and we'll drop the

subscripti and just think about n
,
k

,
d -> 0
.-· The alphabet of Ci might depend on i. (But if itdoesn't will say the whole family
has alphabet size g) .

EXAMPLE.
-

#
Our Question : What is the best trade-off between R(C) and S(C) ?
(in the asymptotic setting (

Easier
question: Can we obtain codes with R(C) -0 and G(C) =0?

#

FurecodewmRossT



d g-ARY ENTROPY
1 - logg(ulg (d-1 ,n))ilbemov Hammiglogg(Volg(() , n)

for 121 = g

Now that we have an asymptotic parameter regime, how should we
parse

the

GV and Hamming Drunds ?

In particular, what is logy (Vlug),n)) in termsoff
,
if Sidim ?

Ok
,
so thisis [L(((g-1)",

=

IMomentofctionupkfaly
This generalizes the BINARY ENTROPYS FUNCTION Hz(X) = H(X)

,

which
you may

have seen.

The reason we care (for this class) is that Itg(x) captures Volg(xn) nicely
:

·

let brand nes
4

A function fan)
is o(n) if

f(u)
n
+ 0asn+2

See ESSENTIAL CODING THEORY
,
Chapter3 fora proof.

[Proof idea: mess around withthebinomial coefficients and use Stirling's formula.

ASIDE : You may have see Hz(p) described in terms of the #bits

it takes to describe something. That is, I can describe a

random
string of lengthn where each bit is 1 w/

-Then the number of bits you need lo randum in #g probe
describe x is roughly Hg(p)

.



Hg(x) looks like this

n
x

&SHz(x)

something

L
Hz(X)

I
11111

16 13 124351

Some useful properties[You can seethese by taking Taylorexpansions]:
-

³
P
is reasonable

and

·

If
g
is really big , then Hg(p)

=

p
. logg (9-1)

teautloggs
(so

, eventuallythe plot looks like
#cical

· If gis
reasonableand

p
is

really
small

,
then Hg(p)
=gult#This termis P/en(y)

the largest = O(p)

~ plogg("p)

(so, near O all those curves look like exen(x) (
en(g)

Now
,
we can take limits in the GV and Hamming bounds to obtain:

IMMING
BOUND) for

any family

/
mVBOUND)(e+

922
.
for
any

0x2
Cof

g-any
codes, for

any
O<= 1-Hg(s), there

R(C) = 1 - Hg(f(c)(2) exists a
g-any familyof codes CW/

S(C) =G and

in the Hamming bound.

4 Proof : follows by taking limits 1(((= 1 - Hy(z)
- 2.

Proof : FUN EXERCISE (giventhenonasymptoticversion)



Notice: this answers our

Now it's easier to compare these
two bounds. earlier

question.
There do exist

R(rate) A Imptoticallygood
cons

this is the explicitones with efficient alys
??

picture forga:insome

Now
,
can we find some

~hamming bound
for binarycodes

I

e ³
S (Relativedistance

for binarycodes

QUESTION Are there families of codes thatbeatthe GV bound ?

-S ->

-
Answer 1: Yes

.
For
g

49
,

ANSWER 2 :???
-

-

"AlgebraicGeometry Codes
" For binary codes, we don't know.

beatthe GV bound. OPEN PROBLEM !

ESTION of

Canwe findxplicitconstructiona Gubound ?I/ -ANSWER 1
.

For largealphabets yes. ANSWER:2 .???
-

-

(We'll see soon) For
binary codes, recent work

of [Ta-Suma 2017] gives something
close in a

very particularparameter

regime ... but in general, OPEN PROBLEM !

I



QUESTIONSO PONDER

d Can
you
think of strategies to improve the Hamming bound ?

³
familyof

e Is it possible to have a codes with S 1- g
and Rs O ?

-


