

CS250/EE387 - LECTURE 4 -

A few more bounds...
and REED-SOLOMON
CODES!!!

These are
my favorite
things.

AGENDA

- ① Plotkin + Singleton bounds
- ② Reed Solomon Codes!
- ③ Dual view of RS Codes
+ more algebra! "

④ Recall from last time:

We took some limits, let n get big, and ended up with:

SOME QUESTIONS.

QUESTION

Are there families of codes that beat the GV bound?

ANSWER 1: Yes. For $q \geq 49$,
"Algebraic Geometry Codes"
beat the GV bound.

ANSWER 2: ???

For binary codes, we don't know.
OPEN PROBLEM!

QUESTION

Can we find explicit constructions of
families of codes that meet the GV bound?

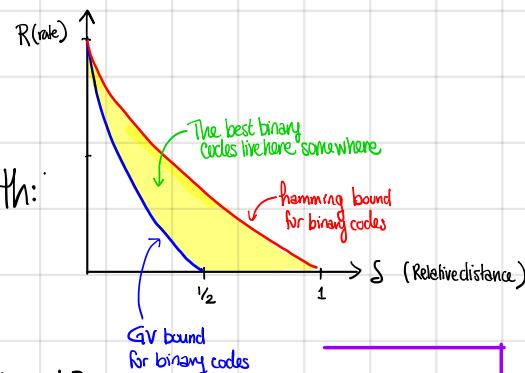
ANSWER 1: For large alphabets, yes.
(We'll see soon)

ANSWER 2: ???

For binary codes, recent work
of [Ta-Shma 2017] gives something
close in a very particular parameter
regime... but in general, **OPEN PROBLEM!**

TODAY'S ANT FACT

Ant queens can live for up to 30 years!



① Singleton \vdash Plotkin bounds

Let's try to narrow down that region a little bit.

THM. [Singleton Bound] If \mathcal{C} is an $(n, k, d)_q$ code, then $k \leq n - d + 1$.

Proof. For $c \in \mathcal{C}$, consider throwing out the last $d-1$ coordinates:

$$c = (x_1, x_2, \dots, \underbrace{x_{n-d+1}, \dots, x_{n-d+2}, \dots, x_n}_{\text{call this } \varphi(c) \in \sum^{n-d+1}})$$

get rid of these

Consider $\tilde{\mathcal{C}} = \{ \varphi(c) : c \in \mathcal{C} \}$, so $\tilde{\mathcal{C}} \subseteq \sum^{n-d+1}$

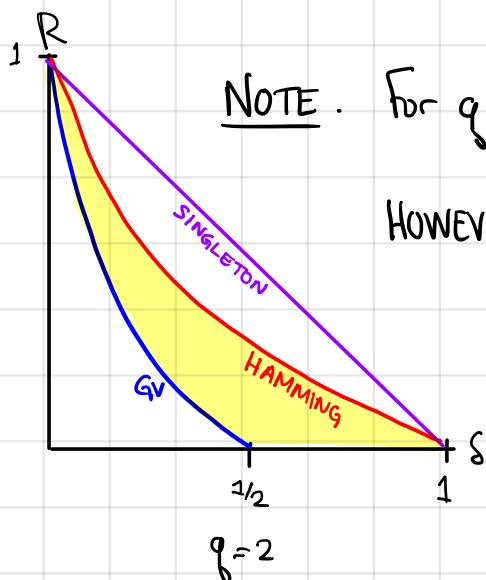
CLAIM 1: $|\mathcal{C}| = |\tilde{\mathcal{C}}|$

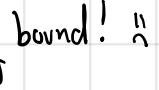
If not, then $\exists c, c' \in \mathcal{C}$ s.t. $\varphi(c) = \varphi(c')$.
 But then $\Delta(c, c') \leq d-1 \nless$

CLAIM 2: $|\tilde{\mathcal{C}}| \leq q^{n-d+1}$

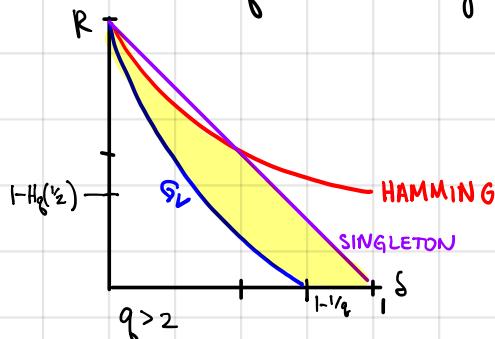
Since $\tilde{\mathcal{C}} \subseteq \sum^{n-d+1}$

Thus, $|\mathcal{C}| \leq q^{n-d+1} \Rightarrow q^k \leq q^{n-d+1} \Rightarrow k \leq n-d+1$.



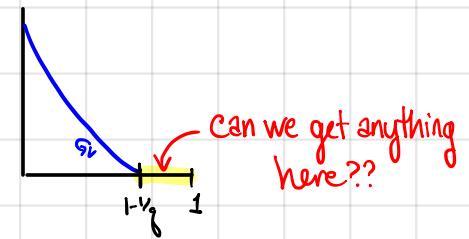
NOTE. For $q=2$, the Singleton bound is WORSE than the Hamming bound! 

HOWEVER (a) it's simpler, and (b) as $q \rightarrow \infty$ we'll get something better.



The GV bound only works up to $d/n \leq 1 - 1/q$.

Is this necessary? Turns out, YES, at least asymptotically.



THM [PLOTKIN BOUND]

Let \mathcal{C} be a $(n, k, d)_q$ code.

(a) If $d = (1 - 1/q) \cdot n$, then $|\mathcal{C}| \leq 2 \cdot q \cdot n$

(b) If $d > (1 - 1/q) \cdot n$, then $|\mathcal{C}| \leq \frac{d}{d - (1 - 1/q) \cdot n}$

Notice that either (a) or (b) imply $R \rightarrow 0$ as $n \rightarrow \infty$.

Thus, in order to have a constant-rate code, we should have $d < (1 - 1/q) \cdot n$.

We'll omit the proof of the Plotkin bound in class — Check out
ESSENTIAL CODING THEORY §4.4 for a proof.

COR. Let \mathcal{C} be a family of codes of rate R and distance $\delta < 1 - 1/q$.

Then:

$$R \leq 1 - \left(\frac{q}{q-1} \right) \cdot \delta + o(1)$$

Proof. (Assuming the Plotkin bound)

Choose $n' \in \mathbb{Z}$ largest so that $n' < \frac{dq}{q-1}$. For all $x \in \sum^{n-n'}$, define

$$\mathcal{C}_x = \left\{ \underbrace{(c_{n-n'+1}, \dots, c_n)}_{n'} \mid c \in \mathcal{C} \text{ with } (c_1, \dots, c_{n-n'}) = x \right\}$$

= the set of ENDS of codewords that BEGIN with x .

Now \mathcal{C}_x has distance $\geq d^*$, block length $n' < \frac{d}{1 - 1/q}$.

Applying the Plotkin bound, $|\mathcal{C}_x| \leq \frac{qd}{qd - (q-1)n'} \leq qd$,

*Note: Technically it's possible that $|\mathcal{C}_x| \leq 1$, in

which case distance isn't defined — but in that case $|\mathcal{C}_x| = qd$ anyway.

Ctd...

Here, we use the fact that $qd - (q-1)n'$ is an integer > 0 , so in particular it is ≥ 1 .

proof ctd.

But then

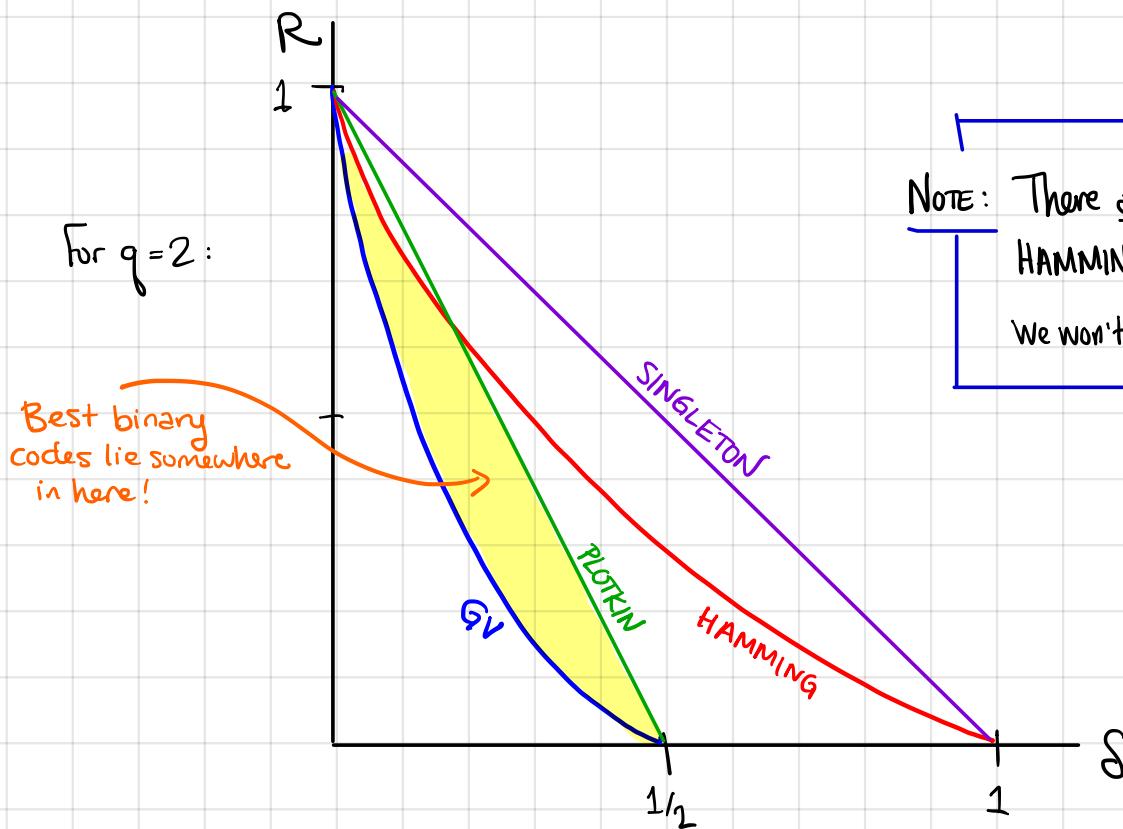
$$\begin{aligned} |C| &= \sum_{x \in \Sigma^{n-n'}} |C_x| \leq q^{n-n'} \cdot q^d \\ &\leq q^{\left(n - \frac{dq}{q-1} + 1\right)} \cdot q^d \\ &= \exp_q \left(n - \frac{qd}{q-1} + o(n) \right) \\ &= \exp_q \left(n \left(1 - \delta \left(\frac{q}{q-1}\right) + o(1)\right) \right), \end{aligned}$$

Here we are using that
 n' is the largest integer $< \frac{dq}{q-1}$.

In particular, $n' \geq \frac{dq}{q-1} - 1$.

$$\text{So } R \leq 1 - \left(\frac{q}{q-1}\right)s + o(1), \text{ as desired. } \blacksquare$$

Did we make progress? Yes! We narrowed down the yellow region a bit.



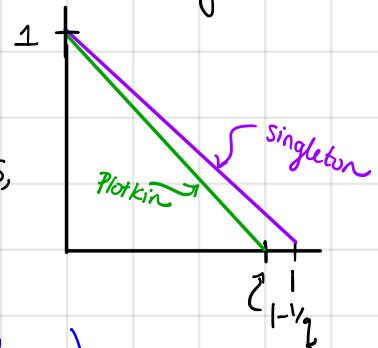
NOTE: There are bounds better than HAMMING & PLOTKIN, but we won't cover them in this course.

FUN EXERCISE: What happens to this picture as $q \rightarrow \infty$?

② REED-SOLOMON CODES.

Notice that for any fixed q , the Plotkin bound is strictly better than the Singleton bound.

AND YET, today we are going to see Reed-Solomon Codes, which EXACTLY ACHIEVE the SINGLETON BOUND.



(The trick: the alphabet size will be growing with n)

We can define polynomials over finite fields, just like we can over \mathbb{R} .

$$f(X) = a_0 + a_1 \cdot X + a_2 \cdot X^2 + \dots + a_d \cdot X^d$$

$a_i \in \mathbb{F}_q$ X is a variable that we think of as taking values in \mathbb{F}_q
 $a_d \neq 0$ d is the DEGREE of the polynomial.

The set of all univariate polynomials w/ coeffs in \mathbb{F}_q is denoted $\mathbb{F}_q[X]$.

Note: depending on your background, it's totally normal to use capital X as a variable or it's totally weird. If it's the latter, get over it.

FACT . A polynomial f of degree d over \mathbb{F}_q has at most d roots.

“pf”. (Sketch). If $f(\beta) = 0$, then $(X-\beta) \mid f$. So if $\beta_1, \dots, \beta_{d+1}$ are roots of f , then $(X-\beta_1)(X-\beta_2) \dots (X-\beta_{d+1}) \mid f$, a contradiction.

[This proof implicitly uses:

“Thm:” Arithmetic over $\mathbb{F}[X]$ behaves like you think it should.

That Theorem is true.]

EXAMPLES Over \mathbb{F}_3 ,

$f(X) = X^2 - 1$ has two roots. $[f(2) = f(1) = 0]$

$f(X) = X^2 + 2X + 1$ has one root. $[f(2) = 2^2 + 2 \cdot 2 + 1 = "9" = 0]$

$f(X) = X^2 + 1$ has zero roots. $[f(0) = 1, f(1) = 2, f(2) = "5" = 2]$

Notice that $X^2 + 1$ DOES have a root over \mathbb{F}_2 , so the field matters.

DEF. A VANDERMONDE MATRIX has the form

$V =$

$$\begin{bmatrix} 1 & \alpha_1 & \alpha_1^2 & \cdots & \alpha_1^m \\ 1 & \alpha_2 & \alpha_2^2 & \cdots & \alpha_2^m \\ 1 & \alpha_3 & & & \\ \vdots & & & & \\ 1 & \alpha_n & \alpha_n^2 & \cdots & \alpha_n^m \end{bmatrix}$$

for some $\alpha_1, \dots, \alpha_n \in \mathbb{F}_q$. Aka, $V_{ij} = \alpha_i^{j-1}$.

distinct

[Note: I also use "Vandermonde" to refer to the transpose of a matrix of this form.]

FACT A square Vandermonde matrix is invertible.

proof 1. $V \cdot \vec{a} = \begin{pmatrix} \sum_i a_i \alpha_1^i \\ \sum_i a_i \alpha_2^i \\ \vdots \\ \sum_i a_i \alpha_n^i \end{pmatrix} = \begin{pmatrix} f(\alpha_1) \\ f(\alpha_2) \\ \vdots \\ f(\alpha_n) \end{pmatrix}$ if $f(X) = a_0 + a_1 X + \cdots + a_{n-1} X^{n-1}$.

Since f is a nonzero polynomial of degree $\leq n-1$, it doesn't have n roots, so $V \cdot \vec{a} \neq 0$ for all nonzero $\vec{a} \in \mathbb{F}_q^n$. Hence, $\text{Ker}(V) = \emptyset$, so V is invertible.

proof 2. $\det(V) = \sum_{\sigma \in S_n} \text{sgn}(\sigma) \prod_{i=1}^n \alpha_i^{\sigma(i)-1} = \prod_{1 \leq i < j \leq n} (\alpha_j - \alpha_i)$

[The LHS is alternating, meaning that if you switch α_i and α_j , the sign flips. So $(\alpha_j - \alpha_i)$ divides it for all $i \neq j$, and then counting degrees says that has to be everything.]

Since $\alpha_i \neq \alpha_j \forall i \neq j$, the RHS has no zero factors and

so is nonzero. [this uses the fact that, in a field, $\alpha \cdot \beta \neq 0$ if $\alpha, \beta \neq 0$.]

ALMOST TRUE

CUR. Any square ^{contiguous} submatrix of a Vandermonde matrix is invertible.

CAVEAT: If one of the eval pts is 0, then we need to include part of the all-ones column in our square submatrix.

proof. A square submatrix looks like

$$\begin{bmatrix} \alpha_i^j & \alpha_i^{j+1} & \alpha_i^{j+2} & \dots & \alpha_i^{j+r} \\ \alpha_{i+1}^j & & & & \alpha_{i+1}^{j+r} \\ \vdots & & & & \\ \alpha_{i+r}^j & & \dots & & \alpha_{i+r}^{j+r} \end{bmatrix} = D \cdot V$$

diag($\alpha_i^j, \dots, \alpha_{i+r}^j$)
 ?
 note: either
 need $j=0$
 or $\alpha_i \neq 0$ for D
 to be full rank!

a square
Vandermonde
matrix.

These facts about Vandermonde matrices will be useful.

First, they imply:

THEOREM. "Polynomial interpolation works over \mathbb{F}_q ".

Formally, given $(\alpha_i, y_i) \in \mathbb{F}_q \times \mathbb{F}_q$ for $i=1, \dots, d+1$, there is a unique degree- d polynomial f so that $f(\alpha_i) = y_i \forall i$.

proof. If $f(X) = a_0 + a_1 X + \dots + a_d X^d$, then the requirements that $f(\alpha_i) = y_i \forall i$

are precisely

$$V \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_d \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \\ \vdots \\ y_d \end{bmatrix}$$

for a square Vandermonde matrix V .

Hence, $a = V^{-1}y$ is the unique solution. (Because linear algebra "works" over \mathbb{F}_q).

Moreover, the proof implies that we can find f efficiently.

Actually, VERY efficiently. You can do an FFT-like thing to multiply by Vandermonde matrices real fast.

FACT. All functions $f: \mathbb{F}_q \rightarrow \mathbb{F}_q$ are polynomials of degree $\leq q-1$.

proof. There are only q pts in \mathbb{F}_q , so we can interpolate a (unique) degree $\leq q-1$ polynomial through any function.

[Second proof: there are q^q such functions and also q^q such polynomials]

EXAMPLE.

$f(x) = x^8$ must have some representation as a degree $\leq q-1$ poly over \mathbb{F}_q . What is it?

ANSWER: $x^8 = x$. This is because

$$\text{FACT: } x^q = x \quad \forall x \in \mathbb{F}_q$$

Now we are finally ready to define...

DEF. (REED-SOLOMON CODES)

Let $n \geq k$, $q \geq n$. The REED-SOLOMON CODE of dimension k over \mathbb{F}_q , with evaluation points $\vec{\alpha} = (\alpha_1, \dots, \alpha_n)$, is

$$RS_q(\vec{\alpha}, n, k) = \{ (f(\alpha_1), f(\alpha_2), \dots, f(\alpha_n)) : f \in \mathbb{F}_q[X], \deg(f) \leq k-1 \}$$

Sometimes I'll just write
RS(n, k).

NOTE: This definition implies a natural encoding map for RS codes:

$$x = (x_0, \dots, x_{k-1}) \mapsto (f_x(\alpha_1), \dots, f_x(\alpha_n)), \text{ where } f_x(X) = x_0 + x_1 X + \dots + x_{k-1} X^{k-1}$$

[We've been 1-indexing
but here it is convenient
to zero-index].

This isn't the ONLY encoding map, but it's the one we will think about for most of the class.

PROP.

$RS_q(\vec{\alpha}, n, k)$ is a linear code, and the generator matrix is the $n \times k$ Vandermonde matrix with rows corresponding to $\alpha_1, \alpha_2, \dots, \alpha_n$.

proof.

Staring. (If x has the coefficients of f , then $V \cdot f = \begin{pmatrix} f(\alpha_1) \\ \vdots \\ f(\alpha_n) \end{pmatrix}$.)

Notice: Since V has rank k , this implies that $\dim(RS(n, k)) = k$

[It's not hard to prove:
Check out the supplementary
material on finite fields.]

Useful fact! Let's
call it (*).

We won't prove it
but we will use it
a bunch.

Prop

The distance of $RS_q(n, k)$ is $d = n - k + 1$.

Proof.

Since $RS_q(n, k)$ is linear, $\text{dist}(RS_q(n, k)) = \min_{c \in RS} \text{wt}(c)$.

The minimum weight of any codeword is at least $n - k + 1$, since any degree $k-1$ polynomial has at most $k-1$ roots.

Equivalent proof: this follows from the fact that every $k \times k$ minor of the generator matrix is full rank.

COR. RS codes exactly meet the Singleton Bound.

YAY! OPTIMALITY!!
For any n and k we like!

DEF.

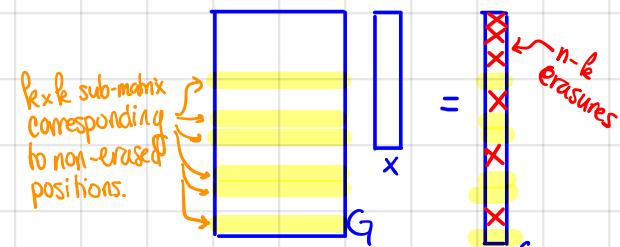
A linear $(n, k, d)_q$ code with $d = n - k + 1$ (aka, meeting the Singleton bd) is called **MAXIMUM DISTANCE SEPARABLE**. (MDS)

So, RS codes are MDS. Notice that MDS-ness is equivalent to the property: "every $k \times k$ submatrix of the generator matrix is full rank", which we just saw was true for RS codes. ↗

In particular, if \mathcal{C} is MDS, then any k positions of $c \in \mathcal{C}$ determine all of c .

Notice that q must be growing in order to get an MDS code (by the Plotkin bound). How big does q have to be? somewhat **OPEN QUESTION!**

(Note: it was settled for prime fields in 2012 by Ball).



Distance $n - k + 1 \Leftrightarrow$ can correct any $n - k$ erasures

\Leftrightarrow any $k \times k$ submatrix of G is invertible.

example that this is possible: $G = \begin{bmatrix} 1 & 1 & \dots & 1 & 0 & 0 \\ x_1 & x_2 & \dots & x_k & 0 & 1 \\ x_1^2 & x_2^2 & \dots & x_k^2 & 0 & 1 \\ x_1^3 & x_2^3 & \dots & x_k^3 & 1 & 0 \end{bmatrix}^T$ is MDS if $q = 2^h$, and $n = q + 2$.

CONJECTURE ("MDS CONJECTURE"). If $k \leq q$, then $n \leq q + 1$, unless $(q = 2^h \text{ and } k = 3)$ or $k = q - 1$, in which case $n \leq q + 2$. (from 1955)

aka, RS codes basically have the smallest alphabet size w/ $n = q$.

③ DUAL VIEW of RS CODES

What is the parity-check matrix of an RS code?

We'll need a bit more algebra.

DEF \mathbb{F}_q^* is the multiplicative group of nonzero elements in \mathbb{F}_q .

Aka, $\mathbb{F}_q^* = \mathbb{F}_q \setminus \{0\}$ as a set, and I can define multiplication and division everywhere in \mathbb{F}_q^* .

EXAMPLE. $\mathbb{F}_5 = \{0, 1, 2, 3, 4\} \bmod 5$ equipped w/ + and *

$$\mathbb{F}_5^* = \{1, 2, 3, 4\} \bmod 5$$
 equipped w/ just *.

FACT. \mathbb{F}_q^* is CYCLIC, which means there's some $\gamma \in \mathbb{F}_q^*$ so that

$$\mathbb{F}_q^* = \{\gamma, \gamma^2, \gamma^3, \dots, \gamma^{q-1}\}$$

γ is called a PRIMITIVE ELEMENT of \mathbb{F}_q .

EXAMPLE. 2 is a primitive element of \mathbb{F}_5 , and

$$\mathbb{F}_5^* = \{2, 2^2=4, 2^3=3, 2^4=1\}$$

4 is NOT a primitive element, since $4^2=1, 4^3=-1, 4^4=1, 4^5=-1, \dots$ and we'll never generate 2 or 3 as a power of 4.

FUN EXERCISE:

If you haven't seen this before, play around w/ this and other examples.

What elements of \mathbb{F}_p are primitive? If an element isn't primitive, what can you say about its ORBIT $\{\gamma^i : i=1, 2, 3, \dots\}$?

FACT / LEMMA. For any $0 < d < q-1$, $\sum_{\alpha \in \mathbb{F}_q} \alpha^d = 0$.

Proof.

$$\sum_{\alpha \in \mathbb{F}_q} \alpha^d = \sum_{\alpha \in \mathbb{F}_q^*} \alpha^d$$

$$= \sum_{j=0}^{q-2} (\gamma^j)^d \quad \text{for } \gamma \text{ primitive element of } \mathbb{F}_q.$$

For any $x \neq 1$,

$$(1-x) \cdot \left(\sum_{j=0}^{n-1} x^j \right) = 1-x^n,$$

$$\text{and so } \sum_{j=0}^{n-1} x^j = \frac{1-x^n}{1-x}$$

for any n . Apply this with $x = \gamma^d$.

$$= \sum_{j=0}^{q-2} (\gamma^d)^j$$

$$= \frac{1 - (\gamma^d)^{q-1}}{1 - \gamma^d}$$

$$= \frac{1 - 1}{1 - \gamma^d} = 0.$$

$$(\gamma^d)^{q-1} \cdot \gamma^d = (\gamma^d)^q = \gamma^d,$$

using (*) again.

$$\text{So } (\gamma^d)^{q-1} = 1. \quad (\text{since } \gamma^d \neq 0).$$

Now we can answer our question about the parity-check matrix of RS codes.

PROP. Let $n = q-1$, and let γ be a primitive element of \mathbb{F}_q .

$$RS_q((\gamma^0, \gamma^1, \gamma^2, \dots, \gamma^{n-1}), n, k)$$

$$= \left\{ (c_0, c_1, \dots, c_{n-1}) \in \mathbb{F}_q^n : c(\gamma^j) = 0 \text{ for } j = 1, 2, \dots, n-k \right\}$$

$$\text{where } c(X) = \sum_{i=0}^{n-1} c_i \cdot X^i.$$

COR. The parity check matrix of $RS_q((\gamma^0, \dots, \gamma^{n-1}), n, k)$ is

$$H = \begin{bmatrix} 1 & \gamma & \gamma^2 & \dots & & \gamma^{n-1} \\ 1 & \gamma^2 & \gamma^4 & \dots & & \gamma^{2(n-1)} \\ \vdots & & & & & \gamma^{(n-k)(n-1)} \\ 1 & \gamma^{n-k} & \gamma^{2(n-k)} & \dots & & \end{bmatrix} \in \mathbb{F}_q^{(n-k) \times n}$$

Proof of PROP. It suffices to show that

$$\left[\begin{array}{cccc|c} 1 & \gamma & \gamma^2 & \cdots & \gamma^n \\ 1 & \gamma^2 & \gamma^4 & \cdots & \gamma^{2(n-1)} \\ \vdots & & & & \\ 1 & \gamma^{n-k} & \gamma^{2(n-k)} & \cdots & \gamma^{(n-k)(n-1)} \end{array} \right] \quad H$$

$$n = q-1$$

$$\left[\begin{array}{ccccc} 1 & 1 & 1 & \cdots & 1 \\ 1 & \gamma & \gamma^2 & \cdots & \gamma^{k-1} \\ \gamma^2 & \gamma^4 & \cdots & \gamma^{2(k-1)} & \\ \vdots & & & & \\ 1 & \gamma^{n-1} & \cdots & \gamma^{(n-1)(k-1)} & \end{array} \right] = 0$$

G

k

So let's just consider the (i,j) entry of the product. This is

$$\left[\begin{array}{cccc|c} 1 & \gamma^i & \gamma^{2i} & \gamma^{3i} & \cdots & \gamma^{(n-1)i} \end{array} \right] \cdot \left[\begin{array}{c} \gamma^{0,j} \\ \gamma^j \\ \gamma^{2j} \\ \vdots \\ \gamma^{(n-1)j} \end{array} \right] = \sum_{l=0}^{n-1} \gamma^{li} \cdot \gamma^{lj}$$

$$= \sum_{l=0}^{n-1} \gamma^{l(i+j)}$$

$$= \sum_{l=0}^{n-1} (\gamma^l)^{(i+j)}$$

$$= \sum_{\alpha \in \mathbb{F}_q^*} \alpha^{(i+j)}$$

$$= 0$$

since $i+j \leq (n-k)+k = n = q-1 < q$.
 [and $i+j > 0$ since $i > 0$]

NOTICE: $\text{RS}(n,k)^\perp$ has generator matrix H^T , which again looks a lot like a Vandermonde matrix! So $\text{RS}(n,k)^\perp$ is again (kind of) an RS code!

This particular derivation used the choice of eval. pts heavily.
 However, a statement like this is true in general.

DEF.

A GENERALIZED RS CODE $\text{GRS}_q(\vec{\alpha}, n, k; \vec{\lambda})$ is

$$\text{GRS}_q(\vec{\alpha}, n, k; \vec{\lambda}) := \left\{ (\lambda_0 f(\alpha_0), \lambda_1 f(\alpha_1), \dots, \lambda_n f(\alpha_n)) \mid f \in \mathbb{F}_q[X], \deg(f) \leq k-1 \right\}.$$

THM.

$$\text{GRS}_q(\vec{\alpha}, n, k; \vec{\lambda})^\perp = \text{GRS}_q(\vec{\alpha}, n, n-k, \vec{\sigma})$$

for some $\vec{\sigma} \in (\mathbb{F}_q^*)^n$.

Proof: Fun exercise! (We may prove it in the in-class exercises).

QUESTIONS TO PONDER

- ① How would you modify RS codes to make them binary?
- ② How would you decode RS codes from errors efficiently?
Do you think it's possible?