
Problem Set 2 CS265, Winter 2021-2022
Due: January 19 (Wednesday) at 11am (Pacific Time)

Please follow the homework policies on the course website.

1. (7 pt.) [Gotta catch ’em all?]

Let M be an unknown set of molecules of size |M | = n that are all present in a liquid solution.
You want to identify the set M using an experiment. One run of your experiment on the
solution can identify and output a uniformly random molecule from the set M . You can
conduct multiple experiments on this solution. Assume that the result of each experiment is
independent of the others.

(a) (1 pt.) Give the best lower bound you can to the expected number of experiments you
must run to identify all the n distinct molecules in M . To identify a molecule, it must
appear as the output of at least one experiment. Use big Omega notation to report a
simple answer.

(b) (4 pt.) Suppose the set M of molecules is structured enough for the following to be
possible. If you know any 0.99n of the items in M , you can infer the other 0.01n. Thus
you will stop conducting experiments after identifying 0.99n distinct molecules. What is
the expected number of experiments? Show your work and use big O notation to report
a simple answer.

[HINT: Linearity of expectation is still your friend. ]

(c) (2 pt.) Solution A contains molecules from a set S of size n. However, S has no helpful
structure. To learn S from Solution A, you use Strategy 1.

Strategy 1: Run experiments on Solution A until each of the n molecules of S has been
observed as the output of an experiment at least once.

On the other hand, Solution B contains molecules from a different and larger set S′.
|S′| = 10n and one can infer the set S from S′. Moreover, S′ is nicely structured. You
can infer S′ from any of its subsets of size 9.9n. To learn S from Solution B, you use
Strategy 2.

Strategy 2:

i. Run experiments on Solution B until at least 9.9n distinct molecules have appeared
as the output of an experiment at least once each.

ii. Infer the set S from the subset of S′ of size 9.9n you now know.

Your goal is to find the set S and minimize the expected number of experiments you
need to run. Do you choose Strategy 1 or 2?1 Provide a sentence or two of justification
for your answer.

(d) (0 pt.) [Optional: this won’t be graded.]

Can you strengthen the argument for your answer to part (c) by coming up with high
probability statements for parts (a) and (b) rather than statements in expectation?
[HINT: Try to compute an appropriate variance and use Chebyshev’s inequality ]

1This scenario is less contrived than you might think, and features in systems where information is stored in DNA.
In these systems, enlarging the set from S to S′ corresponds to using an error-correcting-code to add redundancy.
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2. (12 pt.) [Tightness of Markov’s and Chebyshev’s Inequalities]

(a) (4 pt.) Show that Markov’s inequality is tight. Specifically, for each value c > 1,
describe a distribution Dc supported on non-negative real numbers such that if the
random variable X is drawn according to Dc then 1) E[X] > 0 and 2) Pr[X ≥ cE[X]] =
1/c.

(b) (4 pt.)Show that Chebyshev’s inequality is tight. Specifically, for each value c > 1,
describe a distribution Dc supported on real numbers such that if the random variable
X is drawn according to Dc then 1) E[X] = 0 and Var[X] = 1 and 2) Pr[|X − E[X]| ≥
c
√

Var[X]] = 1/c2.

(c) (4 pt.) [One-sided version of Chebyshev’s Inequality] Prove a one-sided bound on the
distribution of a random variable X given its variance. That is, if Var[X] = 1, what the
best upper bound on Pr[X − E[X] ≥ t]? Give your answer in terms of t. Prove your
bound (a) is true and (b) is tight by coming up with a variable X with distribution Dt

and variance 1 for which Pr[X − E[X] ≥ t] equals your answer.

3. (0 pt.) [This whole problem is optional and will not be graded.] In this problem,
you’ll analyze a different primality test than we saw in class. This one is called the Agrawal-
Biswas Primality test.

Given a degree d polynomial p(x) with integer coefficients, for any polynomial q(x) with
integer coefficients, we say q(x) ≡ t(x) mod (p(x), n) if there exists some polynomial s(x)
such that q(x) = s(x) · p(x) + t(x) mod n. (Here, we say that

∑
i cix

i =
∑

i c
′
ix

i mod n if
and only if ci = c′i mod n for all i.) For example, x5 +6x4 +3x+1 ≡ 3x+1 mod (x2 +x, 5),
since (x3)(x2 + x) + (3x + 1) = x5 + x4 + 3x + 1 ≡ x5 + 6x4 + 3x + 1 mod 5.

Agrawal-Biswas Primality Test.
Given n:

• If n is divisible by 2,3,5,7,11, or 13, or is a perfect power (i.e. n = cr for integers c and r)
then output composite.

• Set d to be the smallest integer greater than log n, and choose a random degree d polynomial
with leading coefficient 1:

r(x) = xd + cd−1x
d−1 + . . . + c1x + c0,

by choosing each coefficient ci uniformly at random from {0, 1, . . . , n− 1}.

• If (x + 1)n ≡ xn + 1 mod (r(x), n) then output prime, else output composite.

Consider the following theorem (you can assume this if you like, or for even more optional
work, try to prove it!):

Theorem 1 (Polynomial version of Fermat’s little theorem).

• If n is prime, then for any integer a, (x− a)n = xn − a mod n.

• If n is not prime and is not a power of a prime, then for any a s.t. gcd(a, n) = 1 and
any prime factor p of n, (x− a)n 6= xn − a mod p.
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First, show that if n is prime, then the Agrawal-Biswas primality test will always return
prime.

Now, we will prove that if n is composite, the probability over random choices of r(x) that
the algorithm successfully finds a witness to the compositeness of n (and hence returns com-
posite) is at least 1

4d .

(a) Using the polynomial version of Fermat’s Little Theorem, and the fact that, for prime q,
every polynomial over Zq that has leading coefficient 1 (i.e. that is “monic”) has a unique
factorization into irreducible monic polynomials, prove that the number of irreducible
degree d factors that the polynomial (x + 1)n − (xn + 1) has over Zp is at most n/d,
where p is any prime factor of n. (A polynomial is irreducible if it cannot be factored,
for example x2 + 1 = (x + 1)(x + 1) mod 2 is not irreducible over Z2, but x2 + 1 is
irreducible over Z3.)

[HINT: Even though this question sounds complicated, the proof is just one line... ]

(b) Let f(d, p) denote the number of irreducible monic degree d polynomials over Zp. Prove
that if n is composite, and not a power of a prime, the probability that r(x) is a witness

to the compositeness of n is at least f(d,p)−n/d
pd

, where p is a prime factor of n.

[HINT: pd is the total number of monic degree d polynomials over Zp. ]

(c) Now complete the proof, and prove that the algorithm succeeds with probability at least
1/(4d), leveraging the fact that the number of irreducible monic polynomials of degree
d over Zp is at least pd/d − pd/2. (You should be able to prove a much better bound,
though 1/4d is fine.)

[HINT: You will also need to leverage the fact that we chose d > log n and also explicitly
made sure that n has no prime factors less than 17. ]
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