Problem Set 3 CS265, Winter 2021-22
Due: January 26 (Wednesday) at 12:00 noon (Pacific Time)

Please follow the homework policies on the course website.

1. (11 pt.) Aggregating Guesses

In this problem, we’ll consider several different settings where we are aggregating a large
number of noisy, unbiased estimates: Suppose a class has n students. Assume that when
each student is asked to estimate the current temperature, they each provide independent,
unbiased estimates, with X; denoting the ith student’s guess, and let v; denote Var[X;].

(a)

(4 pt.) Suppose we know each of the v;’s and decide to compute a weighted combination
Z =), w;X;, where the weights w; are chosen so as to minimize the variance of Z. What
are those optimal weights as a function of the v;’s, and roughly how accurate will Z be?
[Please give an answer of the form: “with probability at least 0.9, Z will be within blah
of the true temperature, where blah is a function of the v;’s.]

Clarification (added 1/23): The weights w; should be positive and sum to 1.

(5 pt.) For this part, assume each X is drawn from a normal distribution (ie Gaussian),
whose mean is the true temperature, and whose variance is 1. Roughly how accurate
should we expect the median of the n guesses to be? Feel free to provide your answer
as a function of n, accurate up to a constant factor, for example O(1 /n3/ 4). [HINT:
The following basic fact about a Gaussian should be helpful, and is the only property of
a Gaussian that you will need: if Y is a Gaussian with mean p and variance 1, for any
€€ (0,1/2) PrlY <p—¢€ =Pr[Y > p+¢€ <1/2—0.3e€. |

(2 pt.) How does the above compare to if we computed the average of the n values?

(0 pt.) Optional: This is a research-level problem. As above, suppose each X is
independently drawn from a normal distribution whose mean is the true temperature,
and variance v;. Assume you know the (multi)set of the v;’s, but you don’t know which
variance corresponds to which guess. How well should you expect to do, and is there an
efficient algorithm that achieves this?

(0 pt.) Optional: This is a research-level problem. Suppose we are in the setting
above, but don’t know anything about the variances. What is a near-optimal algorithm,
and how well will it do, as a function of the (unknown) list of variances vy, ....? [HINT:
Note that if two X;’s are identical (or super, super close) then we know that two of the
variances are 0 (or really, really small), and hence either of those X;’s would give an
extremely accurate guess, no matter what the other n — 2 guesses are... |

2. (8 pt.) Moment vs Chernoff Bounds

Let X be a non-negative random variable and fix e > 0. So far we have seen two approaches to
upper bounding the tail probability Pr[X > €]. One is based on the moments of X: assuming
that we know (either exactly or a good upper bound of) E [Xl] ,E [XQ} , ..., for any integer

kE > 1 we have Pr[X > ¢ = Pr[Xk > ek] <

E[X*] . .
—7—. Choosing the k£ that minimizes the



right-hand side gives us the best moment bound:

, E [X*]
inf -
k€Z,k>1 €

Another approach is based on the moment-generating function of X: for any ¢ > 0, we have
tX
Pr[X > € = Pr[e!* > elf] < %. Similarly, the best Chernoff bound is obtained by

choosing t optimally:
) E [etX]
inf ———.
t>0  ete

Prove that the best moment bound is always as good as the best Chernoff bound, i.e.,

{ o E[X*] } E [e"]
min inf ;15 <inf ———=,

keZk>1  €F t>0  ete

. (11 pt.) Concentration without Independence

A computer system has n different failure modes, each of which happens with a small proba-
bility. Fortunately, the system is designed to be sufficiently robust in the following sense: as
long as less than half of the failures occur, things are fine; otherwise, a large-scale crash will
happen. We want to make sure that the probability of crashing is small enough.

To model the above scenario, we define n Bernoulli random variables X1,...,X,. Each X;
is the indicator of the i-th failure mode, i.e., X; = 1 if failure ¢ occurs and X; = 0 otheriwse.
Our goal is to upper bound the probability Pr[Y"" | X; > n/2].

(a) (2 pt.) Let’s first assume that the n failure events are independent and the probability
of each failure is at most 1/3. Formally, we have:
Assumption 1. Pr[X; = 1] < 1/3 for every i € [n| and X1, ..., X, are independent.

Prove that under Assumption 1, for some constant C' > 0 that does not depend on n,
n
Pr [Z Xi > n/2] <e Om, (1)
i=1

Thus, the probability of a crash is exponentially small in 7.
[HINT: Feel free to use (without proof) any of the Chernoff bounds in lecture note #5

(including Theorem 2 and Corollaries 5 and 6) and also the inequality ﬁ < e /3
for 6 €0,1]. ]

(b) (1 pt.) Now we decide that Assumption 1 is too unrealistic, since many of the failure
modes are known to be strongly correlated. Show that only assuming Pr[X; |<1 / 3
(and not the independence), the probability of crashing can be as large as Q(l)
particular, prove that for any n > 1, there exist random variables Xi,..., X, that

satisfy: (1) Pr[X; =1] < 1/3 for every i € [n]; (2) Pr[>_" , X; > n/2] > 1/3.

(¢) (2 pt.) Let’s try the following relaxation of Assumption 1, which states that the prob-
ability for k different failures to occur simultaneously is exponentially small in k:



Assumption 2. For any S C [n], Pr[X; =1 for all i € S] < (1/3)151.

Show that Assumption 2 is strictly weaker than Assumption 1 by proving: (1) Assump-
tion 1 implies Assumption 2; (2) the implication on the other direction does not hold,
i.e., there exist some n and X1, ..., X, that satisfy Assumption 2 but not Assumption 1.

[HINT: For (2), there exists a counterexample for n = 2. |

(6 pt.) Prove that under Assumption 2, inequality (1) holds for some constant C' > 0. In
your proof, you can appeal to the proof of the Chernoff bounds from lecture videos/notes
if you need to write it out verbatim at some point. For example, if you manage to upper
bound Pr[} " ; X; > n/2] by an expression involving the moment-generating function
of some random variable Y that is the sum of n independent Bernoulli random variables,
you can simply say that “the rest of the proof is exactly the proof of Theorem 2 from
Lecture #5”.

[HINT: Consider independent Bernoulli random variables Y1, ...,Y, with Pr[Y; = 1] =
1/3 for each i € [n]. For distinct indices i, j,¢ € [n], does E [X;X;X,] < E[Y;Y;Y,] hold?
Can you extend your proof of the inequality to the case with repeating indices? |
[HINT: Let X =37 | X; andY = > | Y;. What can we say about E [X*] and E [Y*]
for integer k > 02 Considering the identity e* = Z;‘i% Zk—]?, what can we say about E [etX]
and E [ety] for anyt > 07?]

(0 pt.) [Optional: this won’t be graded.] Can you construct counterexamples for
Part 3b that satisfy pairwise independence but have a crashing probability of Q(1/n)?
Formally, prove that there exists C' > 0 such that for any n > 2, there exist Xy,..., X,
that satisfy: (1) Pr[X; = 1] <1/3; (2) X; and X are independent for distinct i, j € [n];
3)Pr>, X; >n/2] > C/n.

[NOTE: This shows that unlike Chebyshev’s inequality, Chernoff bounds do not hold if
we only assume pairwise independence. |

[HINT: Recall pairwise independent hash functions if you have seen them before. You
can use the Bertrand-Chebyshev theorem, which states that for any integer n > 1, there
exists a prime number p with n < p < 2n. |



