
Problem Set 3 CS265, Winter 2021-22
Due: January 26 (Wednesday) at 12:00 noon (Pacific Time)

Please follow the homework policies on the course website.

1. (11 pt.) Aggregating Guesses

In this problem, we’ll consider several different settings where we are aggregating a large
number of noisy, unbiased estimates: Suppose a class has n students. Assume that when
each student is asked to estimate the current temperature, they each provide independent,
unbiased estimates, with Xi denoting the ith student’s guess, and let vi denote V ar[Xi].

(a) (4 pt.) Suppose we know each of the vi’s and decide to compute a weighted combination
Z =

∑
iwiXi, where the weights wi are chosen so as to minimize the variance of Z. What

are those optimal weights as a function of the vi’s, and roughly how accurate will Z be?
[Please give an answer of the form: “with probability at least 0.9, Z will be within blah
of the true temperature, where blah is a function of the vi’s.]

Clarification (added 1/23): The weights wi should be positive and sum to 1.

(b) (5 pt.) For this part, assume each Xi is drawn from a normal distribution (ie Gaussian),
whose mean is the true temperature, and whose variance is 1. Roughly how accurate
should we expect the median of the n guesses to be? Feel free to provide your answer
as a function of n, accurate up to a constant factor, for example O(1/n3/4). [HINT:
The following basic fact about a Gaussian should be helpful, and is the only property of
a Gaussian that you will need: if Y is a Gaussian with mean µ and variance 1, for any
ε ∈ (0, 1/2) Pr[Y < µ− ε] = Pr[Y > µ+ ε] < 1/2− 0.3ε. ]

(c) (2 pt.) How does the above compare to if we computed the average of the n values?

(d) (0 pt.) Optional: This is a research-level problem. As above, suppose each Xi is
independently drawn from a normal distribution whose mean is the true temperature,
and variance vi. Assume you know the (multi)set of the vi’s, but you don’t know which
variance corresponds to which guess. How well should you expect to do, and is there an
efficient algorithm that achieves this?

(e) (0 pt.) Optional: This is a research-level problem. Suppose we are in the setting
above, but don’t know anything about the variances. What is a near-optimal algorithm,
and how well will it do, as a function of the (unknown) list of variances v1, . . . .? [HINT:
Note that if two Xi’s are identical (or super, super close) then we know that two of the
variances are 0 (or really, really small), and hence either of those Xi’s would give an
extremely accurate guess, no matter what the other n− 2 guesses are... ]

2. (8 pt.) Moment vs Chernoff Bounds

Let X be a non-negative random variable and fix ε > 0. So far we have seen two approaches to
upper bounding the tail probability Pr[X ≥ ε]. One is based on the moments of X: assuming
that we know (either exactly or a good upper bound of) E

[
X1
]
,E
[
X2
]
, . . ., for any integer

k ≥ 1 we have Pr[X ≥ ε] = Pr[Xk ≥ εk] ≤ E[Xk]
εk

. Choosing the k that minimizes the
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right-hand side gives us the best moment bound :

inf
k∈Z,k≥1

E
[
Xk
]

εk
.

Another approach is based on the moment-generating function of X: for any t > 0, we have

Pr[X ≥ ε] = Pr[etX ≥ etε] ≤ E[etX ]
etε . Similarly, the best Chernoff bound is obtained by

choosing t optimally:

inf
t>0

E
[
etX
]

etε
.

Prove that the best moment bound is always as good as the best Chernoff bound, i.e.,

min

{
inf

k∈Z,k≥1

E
[
Xk
]

εk
, 1

}
≤ inf

t>0

E
[
etX
]

etε
.

3. (11 pt.) Concentration without Independence

A computer system has n different failure modes, each of which happens with a small proba-
bility. Fortunately, the system is designed to be sufficiently robust in the following sense: as
long as less than half of the failures occur, things are fine; otherwise, a large-scale crash will
happen. We want to make sure that the probability of crashing is small enough.

To model the above scenario, we define n Bernoulli random variables X1, . . . , Xn. Each Xi

is the indicator of the i-th failure mode, i.e., Xi = 1 if failure i occurs and Xi = 0 otheriwse.
Our goal is to upper bound the probability Pr [

∑n
i=1Xi ≥ n/2].

(a) (2 pt.) Let’s first assume that the n failure events are independent and the probability
of each failure is at most 1/3. Formally, we have:

Assumption 1. Pr[Xi = 1] ≤ 1/3 for every i ∈ [n] and X1, . . . , Xn are independent.

Prove that under Assumption 1, for some constant C > 0 that does not depend on n,

Pr

[
n∑
i=1

Xi ≥ n/2

]
≤ e−Cn. (1)

Thus, the probability of a crash is exponentially small in n.

[HINT: Feel free to use (without proof) any of the Chernoff bounds in lecture note #5

(including Theorem 2 and Corollaries 5 and 6) and also the inequality eδ

(1+δ)1+δ
≤ e−δ2/3

for δ ∈ [0, 1]. ]

(b) (1 pt.) Now we decide that Assumption 1 is too unrealistic, since many of the failure
modes are known to be strongly correlated. Show that only assuming Pr[Xi = 1] ≤ 1/3
(and not the independence), the probability of crashing can be as large as Ω(1). In
particular, prove that for any n ≥ 1, there exist random variables X1, . . . , Xn that
satisfy: (1) Pr[Xi = 1] ≤ 1/3 for every i ∈ [n]; (2) Pr [

∑n
i=1Xi ≥ n/2] ≥ 1/3.

(c) (2 pt.) Let’s try the following relaxation of Assumption 1, which states that the prob-
ability for k different failures to occur simultaneously is exponentially small in k:
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Assumption 2. For any S ⊆ [n], Pr [Xi = 1 for all i ∈ S] ≤ (1/3)|S|.

Show that Assumption 2 is strictly weaker than Assumption 1 by proving: (1) Assump-
tion 1 implies Assumption 2; (2) the implication on the other direction does not hold,
i.e., there exist some n and X1, . . . , Xn that satisfy Assumption 2 but not Assumption 1.

[HINT: For (2), there exists a counterexample for n = 2. ]

(d) (6 pt.) Prove that under Assumption 2, inequality (1) holds for some constant C > 0. In
your proof, you can appeal to the proof of the Chernoff bounds from lecture videos/notes
if you need to write it out verbatim at some point. For example, if you manage to upper
bound Pr [

∑n
i=1Xi ≥ n/2] by an expression involving the moment-generating function

of some random variable Y that is the sum of n independent Bernoulli random variables,
you can simply say that “the rest of the proof is exactly the proof of Theorem 2 from
Lecture #5”.

[HINT: Consider independent Bernoulli random variables Y1, . . . , Yn with Pr[Yi = 1] =
1/3 for each i ∈ [n]. For distinct indices i, j, ` ∈ [n], does E [XiXjX`] ≤ E [YiYjY`] hold?
Can you extend your proof of the inequality to the case with repeating indices? ]

[HINT: Let X =
∑n

i=1Xi and Y =
∑n

i=1 Yi. What can we say about E
[
Xk
]

and E
[
Y k
]

for integer k ≥ 0? Considering the identity ez =
∑+∞

k=0
zk

k! , what can we say about E
[
etX
]

and E
[
etY
]

for any t > 0? ]

(e) (0 pt.) [Optional: this won’t be graded.] Can you construct counterexamples for
Part 3b that satisfy pairwise independence but have a crashing probability of Ω(1/n)?
Formally, prove that there exists C > 0 such that for any n ≥ 2, there exist X1, . . . , Xn

that satisfy: (1) Pr[Xi = 1] ≤ 1/3; (2) Xi and Xj are independent for distinct i, j ∈ [n];
(3) Pr [

∑n
i=1Xi ≥ n/2] ≥ C/n.

[NOTE: This shows that unlike Chebyshev’s inequality, Chernoff bounds do not hold if
we only assume pairwise independence. ]

[HINT: Recall pairwise independent hash functions if you have seen them before. You
can use the Bertrand-Chebyshev theorem, which states that for any integer n ≥ 1, there
exists a prime number p with n < p < 2n. ]
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