
Problem Set 4 CS265, Winter 2022
Due: February 2 (Wednesday) at 11:30 (Pacific Time)

Please follow the homework policies on the course website.

1. (10 pt.) Poissonization

For this problem, we will study a simplified variant of Wordle. We consider an n-letter
alphabet, and a language containing all the possible k-letter words. One k-letter word is
chosen to be the secret word of the day, and the goal is to identify all the letters that occur
in this word. The player guessing guesses a single letter at a time, and it is revealed to them
whether the letter appears in the secret word. (Note, in contrast to the real game Wordle,
we only care about guessing the letters, not their order, and each guess consists of a single
letter, not a full word).

Throughout, you should assume that as n goes to infinity, ω(1) = k = o(n).

Greg and Mary have been competing at Wordle for the past two weeks, and naturally, they
both use a randomized algorithm to make their guesses.

(a) (2 pt.) Greg is lazy (or lets his daughter do the typing) and makes his guesses completely
at random. (His guesses might repeat themselves.) Give an upper bound on the number
of guesses he needs to make until with probability 0.9, he learns all the letters in the
secret word. Express your answer in terms of n and k with an exact leading term. You
may use big-O notation for any lower order terms.

Mary knows that the secret word comes from the following distribution: each letter i ∈
1, . . . , n has a frequency pi, where

∑n
i=1 pi = 1, and the secret word is chosen by selecting

each letter independently to be letter i with probability pi. For simplicity, for the rest of the
problem you may assume that the secret word has length Poi(k).

(b) (2 pt.) What is the distribution of number of occurrences of each letter in the secret
word?

Clarification: You do not need to justify your answer (if it is correct), but think about
it enough to convince yourself of it! Feel free to include a justification for partial credit.

(c) (2 pt.) Mary chooses her guesses independenty to come from exactly the same letter
distribution as the secret word (given by the pi). What is the probability that after she
has guessed Poi(cn) total guesses that she knows all the letters? Express your answer
in terms of c and the pi (and n and k).

(d) (3 pt.) Suppose the following distribution pi: A third of the letters are vowels, and each
of their probabilities of appearing are 3

2n . Two thirds of the letters are consonants, and
their probability of appearing is 3

4n . What is the number of guesses until Mary knows all
the letters with probability more that 90%? Give the exact leading term. [HINT: First
find some c such that if Mary makes Poi(cn) guesses, with probability 90% she guesses
all the letters. Then argue that if she makes a deterministic and slightly higher number
of guesses, she succeeds with probability 90%. Similarly, if she makes a deterministic
and slightly lower guess, she fails with probability at least 10%.]
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(e) (1 pt.) Whose strategy is better for this letter distribution, Greg’s or Mary’s?

Clarification: It’s okay that Greg and Mary are working in slightly different models
(since Greg’s word has exactly k letters and Mary’s does not). We’re just looking for a
one-bit answer here.

(f) (0 pt.) Can you come up with a better strategy for the guesses, assuming you are
still guessing letters independently at random? Find a distribution {pi} on which your
strategy performs better than both Mary and Greg’s strategies.

Formally, find some probabilities {pi} and {gi} and a value k such that if the letters of
the secret word are chosen independently from the distribution {pi} and your guesses are
chosen independently from the distribution {gi}, then the number of guesses required to
know the letters in the secret word with probability 90% is a constant factor smaller for
your strategy than for either Greg or Mary’s.

Can you find an optimal way to chose the gi as a function of the pi?

2. (4 pt.) Prove that (R3, `2) cannot be embedded into (R2, `2) with bounded distortion. In
other words, there are no functions f : R3 → R2 and constants α, β > 0 such that the
following inequality holds for all x, y ∈ R3:

β‖x− y‖2 ≤ ‖f(x)− f(y)‖2 ≤ αβ‖x− y‖2.

[HINT: Try a proof by contradiction. How should the grid Gn := {(i, j, k) : i, j, k ∈
{0, 1, . . . , n}} be embedded?]
[HINT: A disc of radius r has area πr2.]

3. (4 pt.) We showed that Bourgain’s embedding allows us to embed an arbitrary metric space
(X, d) with |X| = n into (Rk, `1) with target dimension k being O((log n)2) and distortion
being O(log n). Moreover, the embedding can be computed efficiently using a randomized
algorithm. Prove that the exact same embedding computed by the randomized algorithm
also achieves O(log n) distortion with high probability when the target metric is `p for p > 1.
We encourage you to emphasize only the differences from the proof in the lecture notes rather
than copying the entire proof.
[HINT: Let f : X → Rk denote the relevant embedding. For any two points x, y ∈ X, we
showed that ‖f(x)−f(y)‖1 ≤ k ·d(x, y). Can we say something similar about ‖f(x)−f(y)‖p?]
[HINT: For any two points a, b ∈ Rk and p > 1, it holds that ‖a − b‖p ≥ k(1/p)−1‖a − b‖1.
This is a special case of Hölder’s inequality.]
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