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1 Introduction

Welcome to CS265/CME309!! This course will revolve around two intertwined themes:

e Analyzing random structures, including a variety of models of natural randomized
processes, including random walks, and random graphs/networks.

e Designing random structures and algorithms that solve problems we care about.

By the end of this course, you should be able to think precisely about randomness, and
also appreciate that it can be a powerful tool. As we will see, there are a number of basic
problems for which extremely simple randomized algorithms outperform (both in theory and
in practice) the best deterministic algorithms that we currently know.

2 Computational Model

During this course, we will discuss algorithms at a high level of abstraction. Nonetheless, it’s
helpful to begin with a (somewhat) formal model of randomized computation just to make
sure we're all on the same page.

Definition 2.1 A randomized algorithm is an algorithm that can be computed by a Turing
machine (or random access machine), which has access to an infinite string of uniformly
random bits. Equivalently, it is an algorithm that can be performed by a Turing machine
that has a special instruction “flip-a-coin”, which returns the outcome of an independent flip
of a fair coin.

*(©2019, Gregory Valiant. Not to be sold, published, or distributed without the authors’ consent.

1



We will never describe algorithms at the level of Turing machine instructions, though if
you are ever uncertain whether or not an algorithm you have in mind is “allowed”, you can
return to this definition. The above definition implies the following two important properties
of randomized algorithms:

e Because the computation can depend on the randomness, the output of the algorithm,
and the computation path itself, are random variables. As such, it makes sense to ask
questions like “What is the probability the output is correct?” or “What is the standard
deviation of the runtime of the algorithm.” For these questions, we are thinking of the
computation path as being a random variable, defined in terms of the randomness of
the random bits that the algorithm uses.

Of course, the output of the algorithm depends on both the randomness of the algo-
rithm and also the input. We will typically view the input as fixed in advance. For
example, if we are running a randomized primality testing algorithm to test if the input
q = 1173 is prime, we will regard ¢ as a fixed parameter, and analyze the execution of
the algorithm on input ¢ = 1173 in terms of the random coin flips. Frequently, we will
be able to prove guarantees that hold for all inputs; namely, continuing the primality
testing example, we will be able to say things like “for every input, ¢, with probabil-
ity at least 1 — 1/2!% over the random coin flips of the algorithm, the algorithm will
correctly output whether or not ¢ is prime.”

e Because we are working with a model where the algorithm has access to coin-flips
(which take one of two possible outcomes), the computation path can be described as
a binary tree, where the branches correspond to the outcomes of the coin tosses. The
topmost branch corresponds to whether the first coin flip landed heads or tails, the
next level corresponds to the second coin-flip, etc.

For example, the tree might look like this, if the algorithm flips three coins and then
outputs a number in {0, 1,2,3,4,5}.
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Notice that if we have a randomized algorithm that terminates after flipping at most
k coins, the probability of every output must be an integer multiple of 1/2%. (If this
isn’t obvious to you, take 3 minutes and convince yourself of it now...) This might
be concerning if you'd like to consider a randomized algorithm that, say, executes
command X with probability 1/3. It turns out that this is fine: one can simulate
a coin that lands heads with probability 1/3 using a sequence of flips of a fair coin.
However, if you are ever designing a randomized algorithm that uses funny transition
probabilities, you can always come back to this model, and double-check whether what
you are doing is actually feasible in this model.

There are two broad classes of randomized algorithms, referred to as “Las Vegas” algo-
rithms and “Monte Carlo” algorithms:

e Las Vegas Algorithms: These algorithms always output the correct answer, though the
runtime can be unbounded, though we require that it has finite expectation. (L.e. the
output is deterministic, but the runtime is a random variable, with finite expectation.)

e Monte Carlo Algorithms: These algorithms have bounded runtime, though they can
output the wrong answer. For algorithms that answer yes/no questions (e.g. “Is ¢
prime?”), we group these into two subclasses, according to whether they have 1-sided
or 2-sided error:

1. 1-sided error: If the true answer is “Yes” then the algorithm will output “Yes”,
and if the true answer is “No”, the algorithm will output “No” with probability
at least p > 0. [We could also swap the Yes/No and it would still be called 1-
sided error...] For the complexity theorists out there, the class of problems that
have polynomial-time 1-sided error Monte Carlo algorithms is known as “RP”
(Randomized-Polynomial).

2. 2-sided error: The algorithm is correct with probability at least 1/2 + € for some
€ > 0. The class of problems that have polynomial-time 2-sided error Monte Carlo
algorithms is known as “BPP” (Bounded Error Probabilistic Polynomial).

The definitions above guarantee only a slight bias towards being correct. Is this really
good enough? One reason why this is enough is that we can increase the probability of
correctness by running the algorithm multiple times. For example, given a 1-sided error
Monte Carlo algorithm, if we run it ¢ times, and it ever outputs “No” we can safely output
“No”, and if it always outputs “Yes”, then we can output “Yes” and the probability we are
incorrect is at most (1 — p)’. [Make sure you understand why this is true!!] We can bound

(1 - p)t S e—pt7

using the fact that 1—xz < e~* for all x so if we choose ¢ to be, say, 10/p, then the probability
that we are incorrect is at most e~1°, which is a very small number.

This trick of replacing 1 — x with e™ is a commonly used trick for getting rid of a tricky
minus sign, and replacing it with a nice exponent. For small values of x, this approximation
is quite accurate, because the derivative of 1 — z and e™* are equal at x = 0.



For the 2-sided error algorithm, intuitively, the right approach is to repeat the algorithm
t times, and output the majority answer. We’re probably going to skip the following calcu-
lation in class, but it is included here for reference—we expect you to be able to do these
sorts of calculations on your own.

Lemma 2.2 If an algorithm is correct with probability 1/2 + €, and we run it t times and
output the magjority answer, the probability we are correct is at least 1 — g2t

Proof:
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where the last inequality is again from the fact that for any z, 1 —2z <e ™. R

2.1 What Kind of Resource is Randomness?

One of the biggest open questions in complexity theory, is the question of whether ran-
domness really helps, and what are the connections between the above classes of randomized
algorithm. The following is one example of such a question that you should be able to answer
after a bit of thinking.

Question 1 Which is more powerful, Las Vegas Algorithms or Monte Carlo Algorithms?

More formally, given a Las Vegas algorithm whose expected runtime is polynomial in the
input length, can we turn it into a Monte Carlo Algorithm whose runtime is bounded by a
polynomial in the input length? Given a Monte Carlo Algorithm with polynomial runtime,
can we turn it into a Las Vegas algorithm with polynomial expected runtime?

Having figured out the answer to this question [think about it!], we might be tempted to
ask:

Question 2 Given a randomized (Las Vegas or Monte Carlo) algorithm whose (expected)
runtime is bounded by a polynomial in the input length, can we turn it into a deterministic
algorithm whose runtime is bounded by a polynomial in the input length?



In other words, we can ask, is the set of problems solvable via polynomial time determin-
istic algorithms equal the set of problems solvable via 2-sided error Monte Carlo algorithms
(does P = BPP?), or via 1-sided error Monte Carlo algorithms (does P = RP?). These
questions are open! While there are many instances of problems for which there seem to be
much simpler and faster randomized algorithms, we do not have a rigorous proof of whether
or not there problems for which randomness is essential for any efficient algorithm.

One way of approaching these questions is to ask whether we can simply replace the
random coin flips via a sequence of deterministic bits that “look kindof random”. For
example, what if we run a randomized algorithm, but instead of flipping coins, we just use
the bits of the binary representation of 77 Surely that can’t be too bad? We could also
analyze how our analysis of randomization actually uses the randomness assumption, with
an aim towards figuring out whether the algorithm would notice whether or not we fed it
less-random bits. ... These ideas fall under the broad umbrella of de-randomization, and are
discussed in the graduate complexity course, taught by Li-Yang Tan or Omer Reingold, two
of the world experts on these topics!

There is also a large body of work understanding how to actually obtain random bits,
and what can be done with imperfect randomness. For example, if the coins aren’t quite
unbiased or independent, are there ways of distilling or extracting the randomness? Given a
large number of kindof-sortof-maybe random coins (that have some randomness, but maybe
are correlated in unknown ways), can we produce a smaller number of almost perfectly
random coins?

We won’t discuss these topics much more in this course. Instead, our focus will be on
designing and analyzing algorithms, assuming access to perfect random coins.

3 Randomized Polynomial Identity Testing

The first randomized algorithm that we will see is an algorithm for deciding whether a
multivariate polynomial is actually 0: Given P(xy,z9,...,x,), we want to know whether
P = 0. This problem isn’t as simple as it might seem at first. For example, consider

P(x1, 79, 13) = —23(21 + 2o) (21 — 22) + (2] + (1 + 22) (1 — 22))23 — 3 — 23 (21 + 22) (21 — 2).

It turns out that, if you were to expand out this polynomial, all the terms cancel. A degree d
polynomial in n variables could end up with > (Z) ~ n? monomials—so the naive algorithm
of simply expanding out all the monomials and then seeing what cancels, could, in the worst
case, take time exponential in the length of the input representation of P.

Before describing an efficient randomized algorithm for this problem, it is worth pointing
out that the task of identifying whether a polynomial is 0 or not is, in fact, an incredibly
useful primitive, largely because polynomials occur everywhere. Here are two applications:

e Graph analysis: Graphs can be represented via adjacency matrices, and the determi-
nants of these matrices (or variant of them) convey information about the structure of



these graphs (especially the question of whether the determinant is 0 or not). Deter-
minants are just polynomials! In particular, one can use this approach to efficiently
test whether a graph has a perfect matching.

e Primality Checking: As we will see in a week or two, the polynomial P(z) := (1 +
2)" —1—2" mod n is 0 if, and only if, n is prime. Working modulo n is a twist that
we won't discuss in this lecture, but we’ll get to it later.

3.1 Schwartz-Zippel Polynomial Identity Test

This testing algorithm was published independently by Jack Schwartz and Richard Zippel in
1979 and should also be attributed to Richard DeMillo and Richard Lipton who published
a version of it in 1978. Based on the fact that it was independently discovered at the same
time by so many people, you might guess that it is fairly simple...

Algorithm 1
PorLyNOMIAL IDENTITY TEST

Given a polynomial P(z1,...,x,):
1. Fix a finite set, S.

2. Choose n values, r1,..., 7, independently and uniformly at random from

S.

3. Evaluate P(ry,...,ry). If P(r1,...,r,) = 0 output “P = 0” otherwise
return “P # 0”.

Theorem 3.1 If P = 0, then the algorithm will always output “P = 0”. If P # 0, then
the algorithm will be correct with probability at least 1 — dengT(P), where degree(P) is the

mazimum sum of the degrees of terms in any monomial (e.g. degree(xiz3 + x323) =5.)

Proof: The first part of the proof is trivial, since if P is 0, then it will evaluate to 0. Hence,
for the remainder, it suffices to consider the case that P(xq,...,x,) is a degree d polynomial.
The proof leverages the following basic fact about univariate polynomials that we all learned
at some point: a degree d polynomial in one variable can have at most d roots. Given this
fact, we will prove the theorem by induction on the number of variables, n:

Base case, n = 1: The only way the algorithm will output the wrong answer is if P(rq) =
0, in which case, by definition, r; is a root of P. Since P has degree d, by assumption, from
our fact about degree d univariate polynomials, Pr[P(ry) = 0] < %, since at most d of the
|S| elements of our set can be roots of P.

Induction step: Assuming the theorem holds for polynomials in < n — 1 variables, we
will consider P(zy,...,x,), and try to reduce this case to an argument about the univariate
polynomial P(x1,79,...,7,), obtained after plugging in the values for z,,...,x,. To make
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this argument, we will leverage our induction hypothesis. Without loss of generality, assume
that P(zy,...,2,) = 2¥Q(xy,...,2,) + T(x1,...,3,) for some polynomials @ and T, such
that @ # 0, and the maximum degree of z; in T" is < k. Namely, we have factored out the
monomials in P for which z; has the highest degree. [If z; does not actually appear in P,
then we would do this argument for a variable x; that does appear....since P is nonzero such
a variable exists.]

Consider the event that Q(r, . .., r,) = 0. By our inductive hypothesis, Pr{Q(rs, ... 1) =
0] < %. If Q(rs,...,7ry) # 0, then what happens to P after we plugin ro, ..., 7,7 Well, then
P(xy1,7r9,...,7,) is a degree k nonzero polynomial of x;. Applying our fact about univariate
polynomials, the probability that this evaluates to 0 when we plug in r; for z; is at most
& Hence the probability the algorithm successfully evaluates to something other than 0 is

Eik
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3.2 Discussion

Given that the Schwartz-Zippel algorithm is the simplest thing imaginable, you might be
tempted to wonder whether there is a simple deterministic algorithm that also works. Sadly,
we do not know of any sub-exponential time deterministic algorithm! For certain special
families of polynomials, deterministic algorithms are known (see e.g. the work of Ran Raz
and Amir Shpilka [2]). In fact, Kabanets and Impagliazzo [I] have shown that if you find a
deterministic polynomial time polynomial identity testing algorithm, this would imply some
extremely strong complexity-theoretic results (such as NEX P ¢ polyCircuits). We believe
that these complexity theoretic results are true, and believe that a deterministic algorithm
exists, but both seem far beyond what we can achieve with current approaches/techniques.

One reason to begin this class with polynomial identity testing is because the story
is fairly faithful to our current understanding of randomized algorithms in general: a very
simple/clean randomized algorithm exists, whose analysis is clever but fairly easy. We believe
that an efficient deterministic algorithm exists, but that it is almost certainly extremely
complicated.
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