
CS265, Winter 2022

Class 11: Agenda, Questions, and Links

1 Announcements

• HW5 was due today, HW6 due next Wednesday!

2 Recap/Questions?

Any questions from the minilectures and/or the quiz (second moment method and LLL)?

3 Practice with the LLL

Recall the k-SAT problem. There are n variables x1, . . . , xn. We consider clauses that looks
like (xi1 ∨ xi2 ∨ xi3 ∨ · · · ∨ xik); that is, a clause is the OR of k literals. For today, assume
that each clause has k distinct variables that appear in it. We have a formula ϕ
that is the AND of m clauses. We would like to know: is ϕ satisfiable? That is, is there a
way to assign values to the variables x1, x2, . . . so that ϕ evaluates to TRUE?

Group Work

Suppose that each variable xi is in at most t clauses, for some parameter t that will
depend on k and that you’ll work out in this problem. Apply the LLL to get a statement
like the following:

Suppose that each variable is in at most t clauses of ϕ. Then ϕ is satisfiable.

(You should try to get t to be as large as possible. It’s not hard to see that the statement
above is true if, say, t = 1, but you should get a value of t that grows with k.)

Hint: Recall that to apply the LLL, you need to define a probability distribution and a
set of “bad” events. We set up this example in the minilecture video, we just didn’t work
out the conclusion. In the set-up of the video, we considered the probability distribution
to correspond to assigning TRUE/FALSE to each variable x1, . . . , xn independently with
probability 1/2 each, and we defined the bad event Ai to be the event that clause i is not
satisfied.

Group Work: Solutions

We claim that if each variable is in at most t ≤ 2k−2k clauses, then the formula is satis-
fiable. To see this, consider a uniformly random assignment to x1, . . . xn (ie setting each
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xi to be TRUE/FALSE independently with probability 1/2). Define events A1, . . . , Am

where Ai is the indicator random variable of the ith clause NOT being satisfied. For a
clause with k variables to not be satisfied, all k variables must take the “bad” assignment,
and hence:

Pr[Ai] = 1/2k.

To apply the LLL, we now need to reason about the dependencies. To that end, we
claim that Ai is mutually independent of the set of clauses whose variable are disjoint
from the variables in clause i, namely the set

Si = {Aj : vbl(clausei) ∩ vbl(clausej) = ∅}.

Indeed, no matter the assignment to variables that occur in the clauses in Si, since none
appear in the ith clause, they can’t alter the probability of Ai. Now we simply count up
the number of events not in the set Si: namely

[#j such that vbl(clausei) ∩ vbl(clausej) 6= ∅] ≤ kt,

since there are k variables in clause i, and each of them is in at most t other clauses.

To conclude, each Ai is mutually independent of all but d = kt other events, and hence
by the LLL with d = kt and p = 2−k, we have that Pr[∩inot(Ai] ≥ (1 − 2p)m > 0
provided dp ≤ 1/4, hence we want kt · 2−k ≤ 1/4, which implies that want t ≤ 2k−2/k.

To put some concrete numbers in here, if k = 10, then as long as each variable appears
in at most 210−8/8 = 25.6 clauses, then the formula is always satisfiable, no matter
the number of variables of clauses!!! Of course, now the big question on your mind
should be “Its great that we know such formulas are satisfiable, but how do we FIND a
satisfying assignment efficiently?” We’ll get to this in the next set of minilectures, on
the “Constructive LLL”!!

3.1 More Practice with LLL and Mutual Independence

Consider a set of equations over variables x1, . . . , xn, where each equation has the form a1xi1+
a2xi2+. . .+arxir ≡ ar+1 mod 17, for some r (that might vary from equation to equation) and
set of coefficients a1, . . . , ar ∈ {1, 2, . . . , 16}, and ar+1 ∈ {0, . . . , 16}. Additionally, suppose
that each variable, xi, occurs in at most 4 equations.

Group Work

Prove that there exists an assignment to the variables such that none of the equations
are satisfied.

Hint: Recall that because 17 is prime, for any a ∈ {1, . . . , 16} and any b ∈ {0, . . . , 16},
the equation ax ≡ b has a unique solution for x ∈ {0, . . . , 16}.
Hint: It might be helpful to go back to the definition of mutual independence when
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arguing about the value of d when applying the LLL.

Group Work: Solutions

Consider the distribution given by assigning each variable xi a uniformly random value in
the set {0, . . . , 16}. Define the event Ai to be the indicator random variable representing
whether the ith equation is satisfied. First, we claim that Pr[Ai] = 1/17. To see this,
consider an equation involving r variables, and note that whatever the assignment to the
first r − 1 variables, over the randomness of assigning the rth variable, the probability
the equation holds is 1/17. This is true because after the first r−1 variables are set, the
equation becomes arxr ≡ a′ mod 17, for some ar 6= 0, and some value of a′, and this
equation has a unique solution modulo 17 (because 17 is prime...).

We now argue that each Ai is mutually independent of all but 4 other equations. This
might seem counterintuitive, because there could be a large number of other equations
sharing variables with each Ai. The argument will critically leverage the definition of
mutual independence. Consider one of the equations: a1xi1 + a2xi2 + . . . + arxir ≡ ar+1

mod 17, and consider the set of equations S that do not include variable xi1 . [By as-
sumption, there are at most 4 equations not in set S.] We claim that the event that the
equation in question is satisfied is mutually independent from all the events correspond-
ing to equations in set S. To see why this holds, recall that for any fixed assignment
to all variables except xi1 , with respect to randomly assigning xi1 , the probability the
equation in question is satisfied is exactly 1/17. Because the equations in set S do not
involve xi1 , conditioning on any outcomes for those equations does not change the dis-
tribution of xi1 , and hence the probability the equation is satisfied is still exactly 1/17
even when conditioning on any subset of outcomes of equations in S. This is precisely
the definition of mutual independence.

To apply the LLL, we are hoping that dPr[Ai] < 1/4, which holds because d = 4, and
Pr[Ai] = 1/17.

4 Practice with the second moment method

In a graph G = (V,E), say that a vertex v is isolated if it has no neighboring vertices.

Group Work

Let G ∼ Gn,p be a random graph where each edge is present independently with proba-
bility p, where p = c lnn

n
for some constant 0 < c < 1.

1. Use the Second Moment Method to show that, with probability at least 1 − o(1),
there is some isolated vertex in G.

For this exercise, feel free to use the approximation e−x ≈ 1 − x when x is small

3



without worrying about it.

Hint: Consider the random variable X that is the number of isolated vertices in G,
and recall that the second moment method says that Pr[X = 0] ≤ Var[X]

(EX)2
.

Hint: When computing the variance of X, you may want to consider the following
question: given two distinct vertices u, v of G, what is the probability that both u
and v are isolated?

2. If you finish the previous part, what statement can you make about the case that
c > 1?

Group Work: Solutions

1. First, lets make sure that the expected number of isolated vertices is reasonably
large for p = c logn

n
with c < 1. We do this by linearity of expectation:

E [# isolated vertices ] = nPr[v is isolated] = n(1−p)n−1 ≈ ne−p(n−1) = n·n−c(1−1/n) ≈ n1−c.

When c < 1, n1−c � 1, things are looking good in expectation.

To apply the second moment method, we need a bound on the variance of the
number of isolated vertices. Letting X denote the number of isolated vertices, we
have the following:

V ar[X] = E
[
X2
]
− (E [X])2

= E

[∑
u,v

Pr[u and v isolated

]
− (E [X])2

= E

[∑
u

Pr[u and u isolated

]
+ E

[∑
u6=v

Pr[u and v isolated

]
(E [X])2

≈ n1−c + n(n− 1)(1− p)2n−3 − (E [X])2 .

In the above, we used the fact that for each of the n(n − 1) choices of u 6= v, for
both to be isolated, all of the 2n − 3 potential edges connected to either of them
must be absent. Now we just simplify: (1− p)2n−3 ≈ e−(2n−3)p = n−c(2−3/n) ≈ n−2c.

n1−c + n(n− 1)(1− p)2n−3 − (E [X])2 ≈ n1−c + n2(1−c) −
(
n1−c)2 = n1−c.

So, to conclude, we have

Pr[X = 0] ≤ V ar[X]

(E [X])2
≈ n1−c

n2(1−c) = nc−1.
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Hence for c < 1, this probability is o(1).

2. In the case that c > 1, the expected number of isolated vertices is roughly n1−c �
1, and hence by Markov’s inequality, the probability that there are any isolated
vertices (ie the probability that the number of isolated vertices is at least 1), is

bounded by E[X]
1
≈ n1−c � 1.
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