
CS265, Winter 2022

Class 12: Agenda and Questions

1 Announcements

• HW6 due Wednesday!

• You get a week off before HW7! (Due to President’s day)

2 Questions?

Any questions from the minilectures and/or the quiz? (Constructive LLL)

3 You prove the constructive LLL for another problem!

Consider the following problem (which has featured on a quiz). You are coloring the integers
{1, . . . , n} either blue or red. You are given as input a collection of sets S1, S2, . . . , Sm ⊆
{1, . . . , n}, so that:

• Each set Si has size at most k.

• Each set Si intersects at most d other sets Sj, for some d > 1.

Our goal is to color the points {1, . . . , n} so that there is no monochromatic set Si. (A set
Si is monochromatic if every element of it is either red or blue).

Group Work

1. Mimic the proof of the constructive LLL that we saw for k-SAT to give a randomized
algorithm that does the following.

Suppose that k ≥ log2 d+ 10000. (Here, 10000 is a stand-in for “some big
enough constant.”) Then there is a randomized algorithm that proceeds
by re-randomizing the sets Si, (that is, it will iteratively look at different
sets Si and randomly re-color all of the points in that set), so that:

• If the algorithm terminates, then all of the numbers {1, . . . , n} will be
colored so that there is no monochromatic set Sj.

• The expected number of times that the algorithm re-randomizes a set
Sj is poly(m).

Don’t worry about giving a complete proof with all the details, just work it out
with enough detail that you believe it. As we did in the minilecture video, you may

1

use the (informal) fact that “there is no function f : {0, 1}X → {0, 1}Y so that (a)
Y � X and (b) with high probability over a uniformly random x ∈ {0, 1}X , it is
possible to recover x given f(x).”

Hint: To map this problem onto k-SAT, think of the Sj’s as standing in for clauses,
and the numbers {1, . . . , n} as standing in for variables.

Hint: It’s not quite as straightforward as applying the mapping in the previous hint
and calling it a day. In particular, can you still work backwards from the “print”
statements in the k-SAT version to figure out the original random bits?

2. What happens to your proof if the number of possible colors grows from two (blue
and red) to some number t? In particular, can you get the same guarantee as above,
but under a weaker guarantee (eg, k ≥ [something smaller than log d+ 10000]).

3. How does the answer that you got in the previous part compare to what Corollary
3 in the lecture notes would give you for this problem?

As a reminder, that Corollary says:

Let V be a finite set of independent random variables. Let A be a finite
set of events determined by the random variables in V . If for all A ∈ A,
|Γ(A)| ≤ d + 1, and Pr[A] ≤ 1

e(d+1)
, then the algorithm from the lecture

notes (the general one, not just for k-SAT) will find an assignment to the
variables V such that no event of A occurs. Additionally, the expected
number of “re-randomizations” performed by the algorithm is bounded by
O(|A|/(d+ 1)).

4. [This question is open-ended and may be difficult—think about it after
you finish the others if you still have time.] What happens to your proof if
the sets can have variable size? (e.g., if all but a few of them have size k, and a few
can be really small? Or if they have average size k? Or....?)

Group Work: Solutions

1. Here is our algorithm with print statements that will help in the proof. We’ve just
copy-pasted the algorithm from the lecture notes (made slightly informal for ease
of discussion), but changed all the talk of satisfying formulas to coloring sets. The
only change is the line in red: we needed to give more information about what went
wrong.

2

Algorithm 1. Find Assignment and Print Stuff
Given S1, . . . , Sm:

• Choose a random assignment σ that assigns a color to each of the

numbers 1, . . . n.

• For each set Si that is monochromatic under σ:

– print "Running Fix on Set i"

– Run Fix(i, σ) on Si and σ.

• Return σ.

Algorithm 2. Fix(i, σ)
Given S1, . . . , Sm, i, and σ:

• If we have run for too long (T re-randomizations), print "I give

up; I’ve got σ" and halt.

• Re-randomize the colors of all of the variables in Si.

• Suppose that Si1 , . . . , Sid+1
are the sets that intersect with Si

(including Si itself).

• For ` = 1, 2, . . . , d+ 1:

– If Si` is monochromatic (say all [color], where [color] is

either blue or red):

∗ Print ‘‘Trying to fix the `’th child..."

∗ Print ‘‘the problem was that it was all [color]’’

∗ Run Fix(i`, σ)

• print "All done, moving back up a level."

To do the proof, we need to do the following three steps:

A We need to argue that we can recover the random bits that go in from the print
statements taht come out.

B We need to count the number of random bits that go in to our algorithm in T
re-randomizations (say in one call to Fix)

C We need to count the number of bits that come out in T re-randomizations (in
one call to Fix).

Thing A is why we needed to add the extra info about the color. With that, let’s see
why A is true. Suppose that we are working backwards from the final σ returned.
Inductively assume that we know the assignment after the t’th re-randomization,
and we want to know the assignment σ′ before that randomization, and we want to
know the outcome of the random bits used in the t’th re-randomization. We know
which set Si was re-randomized at the t’th step, since we are using the “fixing `’th
child” statements to follow along through the execution tree. Thus, every number
that was not in Si didn’t change, so we know what colors all of those were in σ′.
For the items in Si, our extra print statement told us that before they were all
monochromatic [blue or red], so we know what those should have been in σ′ as well,

3

and we know what the randomizing bits were. Continuing in this way, we can work
backwards all the way to the original assignment σ, and we can recover the random
bits that were flipped.

For B, the number of random bits we use is n + Tk, since there are n bits for the
original assignment, and k for each of the T re-randomizations.

For C, the number of bits of print statements that come out are:

• m(C + logm) at the beginning of highest-level calls to Fix to say which clause
we are starting on.

• T (log(d+1)+1+C) bits for “trying to fix the `’th child because it was red” sorts
of calls. (Notice that “because it was red” is only one extra bit of information).

• n+ C bits for “I give up, here’s σ”

where above C is some constant. Thus, the total is at most

m(logm+ C) + T (log(d+ 1) + C) + n+ C

Now, we put it all together. In order to get a contradiction (because the number
of bits out would be way less than the number in), we want

n+ kT � m(logm+ C) + T (log(d+ 1) + C) + n+ C.

After some algebra, we want

m(logm+ C)� T (k − log(d+ 1) + C)

Thus, provided that k ≥ log(d+1)+C for some constant C, the RHS is a constant,
and we win when T ≈ m logm. This is what we wanted to show.

2. If the number of colors grows from 2 to t, then we just have to change the algorithm
to say “because it was green” or “because it was purple” or whatever. This is log t
bits of communication. Working that into our computations above, we get that we
need

n log t+ kT log t� m(logm+ C) + T (log(d+ 1) + log(t) + C) + n log t+ C.

aka
m(logm+ C)� T (k log t− log(d+ 1) + log t+ C)

Thus, we’d need k ≥ logt(d + 1) + C for some constant C, and again we get
O(m logm) re-randomizations.

4

3. In the context of Cor. 3, we have V = {1, . . . , n} and A = {Ai}i∈[m] where Ai is
the event that Si is monochromatic. If there are t colors, then the probability that
Ai is monochromatic is t−(k−1). Thus, Cor. 3 says we need

t−(k−1) ≤ 1/(e(d+ 1)),

or that k ≥ logt(e(d+ 1)) + 1, or that

k ≤ logt(d+ 1) + C,

where C = 1+logt(e). This is roughly the same as what we got above (maybe with
a different additive constant).

4 Using the asymmetric LLL

(We will (probably) not cover this in class; it’s here in case there’s extra time
and/or you finish early)

Recall that the asymmetric LLL (that is, the more general statement that we had in the
lecture notes, both for the algorithmic and non-algorithmic version) was:

Theorem 1. Let V be a finite set of independent random variables. Let A be a finite set of
events determined by the random variables in V . If there exists an assignment x : A → (0, 1)
such that for all A ∈ A,

Pr[A] ≤ x(A)
∏

B∈Γ(A)\{A}

(1− x(B)),

then [the algorithm from the mini-lecture] will find an assignment to the variables V such that
no event of A occurs. Additionally, the expected number of “re-randomizations” is bounded
by
∑

A∈A
x(A)

1−x(A)
.

We saw in the mini-lecture how to derive the symmetric version from this (set x(A) =
1/(d+1) for all A), but it might seem pretty unclear how to apply it in the general asymmetric
case. In this exercise you’ll work out an example.

Group Work

Suppose that n and ` are sufficiently large, and suppose that ` �
√
n · log(n). Show

that there is an edge-coloring of the complete graph on n vertices by two colors (blue or
red) that contains neither a blue triangle nor a red `-clique. (And that the algorithm
from class will find such a coloring).

(Don’t worry too much about constants in your proof; in particular, it’s fine to treat
ex ≈ 1 + x as an equality for small x).

Note: This gives a lower bound on the Ramsey number R(3, `) & `2/ log2(`), where
R(k, `) is the smallest n so that any coloring of Kn must contain either a red k-clique or

5

blue `-clique.

Hint: Consider coloring the vertices red with probability p and blue with probability
1− p, where p = Θ(1/

√
n).

Hint: You may run into a situation where you want to count the number of sets over
vertices of size ` that intersect a set T of size 3 in at least two places. Try trivially
bounding this by

(
n
`

)
, which is just the number of sets of size `.

Hint: If you would like an oracle to tell you how you should choose the x(A), ask Mary
during class...

Group Work: Solutions

Following the hint, we take p = C/
√
n for some constant C. For a set T of three vertices,

let AT be the event that the triangle defined by T is all red. For a set S of ` vertices,
let BS be the event that the K` is all blue. Then

Pr[AT] = p3 Pr[BS] = (1− p)(
`
2)

Next we consider the dependency graph. We get a legit dependency graph if we put an
edge:

• between AT and AT ′ whenever T, T ′ share an edge (for each T , at most 3n such
T ′);

• between AT and BS so that T and S share an edge (for each T , there are trivially
at most

(
n
`

)
such S; for each S, there are at most

(
`
2

)
n such T);

• between BS and BS′ so that S, S ′ share an edge (for each S, there are trivially at
most

(
n
`

)
such S ′).

Now, we need to assign values x(AT) and x(BS). Let’s let x(AT) = x for all T and
x(BS) = y for all S. We need to figure out what x and y should be. To actually solve
the problem, we’d work backwards, but with the advantage of hindsight we’ll pick

x = C ′n−3/2 y = 1/

(
n

`

)
,

for some constant C ′. Now we try to apply the Asymmetric LLL. We want:

p3 ≤ x · (1− x)3n(1− y)(
n
`) (1)

and
(1− p)(

`
2) ≤ y · (1− x)n(`

2)(1− y)(
n
`) (2)

6

Let’s start with the first one. By our choice of y, we have (1 − y)(
n
`) ≈ 1/e. By our

choice of x,
(1− x)3n = (1− C ′n−3/2)3n ≈ e−1/

√
n ≈ 1− C ′/

√
n

for large enough n.

Plugging in our choice of p and x, we get thatto have (1), it’s enough to have

C3n−3/2 ≤ 1

e
· n−3/2 · (1− C ′/

√
n)

This will be true (for large enough n) as long as we choose C small enough. (eg, C = 1/e
will do it comfortably).

Now we turn our attention to (2). Again we have (1− y)(
n
`) ≈ 1/e. Using our choice of

x, we have

(1− x)n(`
2) ≈ exp(−C ′

(
`

2

)
/
√
n).

Using our choice of p, we have

(1− p)(
`
2) ≈ exp(−C

(
`

2

)
/
√
n)

Thus, (2) reads

exp(−C
(
`

2

)
/
√
n) ≤ 1(

n
`

) · exp(−C ′
(
`

2

)
/
√
n) · (1/e).

Taking logs of both sides, we need

C
(
`
2

)
√
n
≥ ` log(n) +

C ′
(
`
2

)
√
n

+ 1

Rearranging, we need that

(C − C ′)
(
`

2

)
≥
√
n(` log(n) + 1),

for which it suffices to have

(C − C ′)` ≥ 2
√
n(log(n) + 1/`).

7

Thus, by choosing C ′ small enough (say, C ′ = C/2), it’s enough to have

` ≥ C ′′(
√
n log n)

for some third constant C ′′. Since we assumed that `�
√
n log n, this is true.

8

	Announcements
	Questions?
	You prove the constructive LLL for another problem!
	Using the asymmetric LLL

