Class 14

Markov Chains Il



Group Work 1



The “Queue” Markov chain
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* Transition matrix: 2D




Stationary Distribution

e Claim: If X,_; ~ m, then Pr[X,_; € A, X, € B] =Pr|X;,_; € B,X; € A]
* Informally: The amount of mass going from A to B needs to be the same as going
from B to A, or else it can’t be a stationary distribution.

* Formally:

o Pr[X, , € A] = Pr[X "X €Al +Pr|X,_, € A, X; € B]
¢ PI‘[Xt € A] — PI‘[X y ANt (S A] + PI‘[Xt_l (S B,Xt (S A]

* X; ~ m, since i is stationary, so Pr[X;,_, € A] =Pr[X; € A].



Back to stationary distribution
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Expected amount of time until the queue is
empty again?
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Group Work 2



Show that 7 is the stationary distribution
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When can we apply the fundamental thm of Markov chains?

* This chain is aPm'ocfl‘c Snce thare [s g S@QF— IOOP
Say that m(x,y) > 0. Then w(x|y)m(y|x) > 0, and
that’s the probability of taking the self-loop at (x, y)

e This chain is NOT nJchs&wii\a( ireducibla. .
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In the context of Markov Chain Monte Carlo

* Assuming that T is such that this Markov chain is aperiodic,
irreducible, and finite, this gives us a way to (approximately) sample
from a multivariate distribution.

* Suppose that m(X |Y = y) and (Y |X = x) are easy to sample from.
* Then we can easy run this chain.
* |t convergesto t(X,Y)

* Note: Often it is much easier to sample from univariate distributions
than multivariate distributions.
* We only did this for two variables, but the same thing works for more than
two variables.

* This is called “Gibbs Sampling”



Recap

* Today: Two exercises about stationary distributions.

* Next time: How fast do Markov chains approach their stationary
distributions?



