CS265, Winter 2022

Class 14 Agenda: Markov Chains II

1 Announcements

• HW7 due next Wednesday.

2 Questions/Lecture Recap

Any questions or reflections from the quiz or minilectures? (Definitions about Markov chains; stationary distributions; fundamental theorem of Markov chains; Markov Chain Monte Carlo)

3 Queues

In this exercise we'll practice setting up a Markov chain, and analyzing its stationary distribution.

Group Work

Suppose that $\mu, \lambda \in (0, 1)$ so that $\mu + \lambda \leq 1$. Consider a queue of maximum length n, which works like this:

- If there are < n items in the queue, then an item joins the queue with probability λ.
- If there are > 0 items in the queue, then an item gets served and leaves the queue with probability μ.
- With any remaining probability, nothing happens.
- 1. Let X_t be the length of the queue at time t, and suppose that $X_0 = 0$. Draw the diagram and transition matrix for the Markov chain X_0, X_1, \ldots
- What is the stationary distribution of this Markov chain, in terms of λ and μ?
 Hint: If π is the stationary distribution, and X_t ~ π, then for any partition of the states into two sets A and B, we have Pr[X_t ∈ A, X_{t+1} ∈ B] = Pr[X_t ∈ B, X_{t+1} ∈ A]. (That is, in the stationary distribution, the probability of crossing from A to B is the same as crossing from B to A....why?). Apply this for A = {0, 1, ..., i} and B = {i + 1, ..., n} to show that for all i, π_iλ = π_{i+1}μ.
- 3. What is the expected amount of time, starting with an empty queue, until the queue is empty again? How does this behave as $n \to \infty$ if (a) $\lambda < \mu$ and (b) $\lambda > \mu$?

4 Gibbs Sampling

In this exercise, we'll explore a special case of MCMC, called "Gibbs Sampling" which arises in many settings in machine learning and language modeling.

Group Work

1. Suppose that π is a joint distribution on X and Y. Suppose that it is hard to sample from π , but relatively easy to sample from $\pi(X|Y = y)$ or $\pi(Y|X = x)$ for any x, y in the support of X and Y respectively.

Consider the following way to set up a Markov chain $(X_0, Y_0), (X_1, Y_1), \ldots$

- Suppose $(X_t, Y_t) = (x, y)$.
- Draw $x' \sim \pi(X|Y=y)$.
- Draw $y' \sim \pi(Y|X = x')$.
- Set $(X_{t+1}, Y_{t+1}) = (x', y')$.

That is, we first condition on Y = y and draw a new value x' for X, and then we condition on that value x' for X and draw a new value y' for Y.

Show that π is a stationary distribution for this Markov chain. That is, if P is the transition matrix, show that $\pi P = \pi$.

- 2. Under what conditions on π does the Fundamental Theorem of Markov chains hold? (That is, what do you need to assume about π to ensure that π is the unique stationary distribution of the Markov chain above, and that the Markov chain will converge to π as $t \to \infty$?)
- 3. Assuming that those conditions are met, how would you interpret this result in the context of Markov Chain Monte Carlo?
- 4. Suppose your goal is to create a language model that allows you to sample a uniformly random 7-word sentence from the distribution of naturally occurring 7-word sentences. How could you use Gibbs sampling to do this, and what would the challenges be? [Note: The setup described above for sampling from a joint distribution (X,Y) when you know the univariate distributions $\pi(X|Y = y)$ and $\pi(Y|X = x)$ directly extends to joint distributions of multiple random variables, e.g. (X^1, X^2, \ldots, X^7) provided you know (or can sample from) the univariate distributions $\pi(X^1|X^2 = x^2, \ldots, X^7 = x^7), \pi(X^2|X^1 = x^1, X^3 = x^3, \ldots, X^7 = x^7),$ etc.]