
CS265/CME309: Randomized Algorithms and
Probabilistic Analysis

Lecture #2: Linearity of Expectation, Karger’s Min-Cut
Algorithm, and Quicksort with Random Pivot.

Gregory Valiant∗, updated by Mary Wootters

September 18, 2020

1 Linearity of Expectation

I expect that you’ve seen linearity of expectation before, but it can be so useful that it’s
worth writing it out explicitly. Linearity of expectation says that if you have random variables
X1, . . . , Xn, and scalars a1, . . . , an, then

E[
∑
i

aiXi] =
∑
i

aiE[Xi].

Let’s do some quick examples. The first one is a bit contrived, and the second is quite
useful!

Example 1. Suppose that G is a d-regular bipartite graph, with n vertices on each side.
Suppose that the left hand vertices are colored half blue and half red. Let X be a random
variable that is defined as the number of red neighbors of a randomly chosen vertex on the
right. What is E[X]? Let vi be the i’th vertex on the left, and let Xi = 1 if the randomly
chosen vertex on the right is attached to vi. We can use linearity of expectation to compute:

E[X] = E[
n∑

i=1

1[vi is red]Xi]

=
∑
i

1[vi is red]E[Xi]

=
∑
i

1[vi is red]
d

n
,

∗©2019, Gregory Valiant. Not to be sold, published, or distributed without the authors’ consent.

1

using the fact that since vi has d neighbors, the probability that a random vertex on the
right is one of them is d/n. But this simplifies to

d

n
· (number of red vertices) =

d

n
· n

2
=

d

2
.

Thus, the expected number of red neighbors of a random vertex is d/2. This makes intuitive
sense, but without linearity of expectation (or some switching-of-summations that would end
up being equivalent), it might be a bit tricky to prove.

Example 2. Suppose we are flipping a p-biased coin repeatedly. Let X be the number
of flips necessary until you get heads. You may recognize X as a geometric random variable,
and perhaps you know that E[X] = 1/p. However, there are a few different ways to prove
this, and the most straightforward one of writing out the definition of the expectation will
result in a pretty messy computation. Here’s a slick way to do it, which (sort of) uses
linearity of expectation.

Suppose we flip our first coin. Either it comes up heads (probability p), or it comes up
tails (probability 1−p). If it comes up heads, the number of coins we need to flip to get heads
is 1. If it comes up tails, the number of coins we need to flip to get heads is 1, plus...however
many more times we need to flip a p-biased coin to get heads. This logic allows us to write
the equation:

E[X] = E[p · 1 + (1− p) · (1 + X)] = p + (1− p)(1 + E[X]).

Solving for E[X], we see that E[X] = 1/p, as desired.
To see a third (optional) example that you might have already seen, go to the end of the

lecture notes and check out the discussion of QuickSort.

2 Karger’s Min-Cut Algorithm

First, we’ll discuss an incredibly elegant randomized algorithm for finding the minimum cut
in a graph, due to David Karger from 1993 [1]. Given an undirected, unweighted graph, the
min-cut problem asks us to partition the vertices into two sets, so as to minimize the number
of edges that cross from one side of the partition to the other. Formally, a cut of a graph
G = (V,E) is a partition of V into two disjoint, nonempty sets, S1 ⊂ V and S2 ⊂ V so that
S1 ∪ S2 = V . We say an edge (u, v) crosses a cut S1, S2 if u ∈ S1 and v ∈ S2 (or the other
way around). A minimum cut of G is one that minimizes the number of edges in G that
cross the cut.

This fundamental problem (and its many variants, including partitioning into k > 2
sets), have many applications, including clustering webpages and social graphs, as well as
documents (say two documents have an edge between them if one references the other, or
we could have a weighted edge corresponding to the Jaccard similarity between the sets of
words used in the documents, for example....if you haven’t come across Jaccard similarity
before, maybe do a quick wikipedia search.). Similar problems are also used to segment
images, assign computation to processors, etc.

2

In contrast to polynomial identity testing (from Lecture 1), where we do not know of any
efficient (polynomial time) deterministic algorithm, min-cut does have efficient deterministic
algorithms. Still, the randomized algorithm we present below is so clean and elegant, that
it is worth including in the first week of this course. Additionally, with several tweaks
(one of which we’ll work out together in our class activities this week), the runtime of this
randomized algorithm becomes competitive with the best deterministic algorithms.

2.1 High-Level Intuition

Karger’s min-cut algorithm starts with the original graph, and iteratively reduces the number
of vertices via a series of edge contractions. In each step, an edge is chosen uniformly at
random, and then the two endpoints of that edge are merged into a single vertex, and all
edges are preserved (we will allow multiple parallel edges between two vertices) except for
the ’self-loop’ that is created by the merge. The algorithm proceeds iteratively until there
are only two vertices left—call them u1 and u2—at which point the algorithm returns the
partition (i.e. the cut) where all the vertices that were merged into u1 are in one set, and
all the vertices that were merged into u2 are in the other set.

To see one intuition for why this algorithm might be expected to perform well, imagine
that the original graph consists of two disconnected components. In this case, the above
algorithm will (with probability 1) return the correct min-cut corresponding to these two
disconnected components. Now imagine that the graph consists of two components (each
of which has quite a lot of internal edges), where the two components are connected via
a single edge (or, more generally, relatively few edges). The algorithm will be successful
provided, at every step of the algorithm, it avoids selecting one of the edges that cross
between the components. (Why? Well if the algorithm contract an edge that crosses between
the components, then at least one of the vertices of the graph will have been merged into the
“wrong” side of the cut.) If there is just a single edge crossing between these components,
then we certainly don’t expect it to be picked early in the algorithm (since there are so many
other edges to choose from), and we will be able to argue that there will be a reasonable
chance that we never contract that edge.

If you work out a few examples to try to understand this intuition, you might realize
that, while there’s a “reasonable” chance that we find the correct min-cut, this reasonable
chance is not high. Fortunately, we can repeat the algorithm described above many times,
independently, to boost the success probability. We’ll show that “reasonable” is big enough
that we don’t have to repeat too many times.

2.2 The Algorithm

We begin by formally defining an edge contraction.

Definition 2.1 Given a graph G = (V,E) with n vertices V = {v1, . . . , vn}, and an edge
e ∈ E that connects vertices vi, vj, the graph resulting from contracting edge e will have
n− 1 vertices, namely V \ {vi}, and edge set defined as follows: for every edge e′ ∈ E that

3

does not have vi as an endpoint, e′ is an edge of the new graph. For every edge e′ ∈ E that
connects vi, vk for k 6= j, we add the edge (vj, vk) to the edge set.

The following figure illustrates whats going on: we merge the two endpoints of the edge,
keeping all edges except self-loops.

Figure 1: Example of a graph before and after contracting the orange edge.

We are now ready to formally state the algorithm.

Algorithm 1
Min-Cut Algorithm

Given a graph G = (V,E) with |V | = n vertices:

1. For i = 1 to n− 2:

• Choose one of the remaining edges of G uniformly at random, and
contract that edge, so that G now has n− i vertices.

2. Return the partition corresponding to the final 2-vertex graph (each of
these two vertices represents a subset of V corresponding to all the ver-
tices that eventually became merged).

At this point, you might be wondering how efficiently one can actually perform an edge
contraction. Naively, this might require a fair bit of book-keeping, as much as the degree
of the vertices being contracted (which could be as large as n). Still, there are some clever
data structures can be used to help with this; it turns out that one can complete one run of
Karger’s algorithm in time O(|E|). For the remainder of these notes, however, we’ll ignore
how we actually implement a contraction, and instead focus on understanding the probability
that the algorithm returns the minimum cut.

Theorem 2.2 The probability that the above algorithm returns a minimum cut is at least
2

n(n−1) ≥ 2/n2.

The proof of the above theorem relies on the following lemma, which argues that, at some
intermediate stage of the algorithm, as long as we haven’t yet contracted an edge that crosses
the minimum cut of the original graph, then that minimum cut will also be a minimum cut
of the graph we currently have.

4

Lemma 2.3 Let S1, S2 ⊂ V be a minimum cut. Suppose we contract an edge (u, v) that
does not cross the cut. Then S1, S2 will be a minimum cut of the new graph resulting from
the contraction.

Proof: For any cut in the new graph (after the contraction) that cuts s edges, that cut
corresponds to a partition in the previous graph that also cuts s edges. Hence the number
of edges cut by the smallest cut cannot decrease when we contract an edge. Finally, if we
contract an edge that does not cross from S1 to S2, then partition S1, S2 still exists in the
new graph, and cuts the same number of edges as before, and hence must still be a min-cut
in the new graph. �

Proof of Theorem 2.2. Although there might be more than one minimum cut, we will actually
prove that, for any minimum cut, C, the probability the algorithm returns that particular
minimum cut C is at least 2

n(n−1) . So let C be some minimum cut.
By Lemma 2.3, the algorithm will return C if, and only if, each of the n − 2 edge

contractions contract an edge that does not cross the cut C. Let Ei denote the event that we
do not contract an edge crossing C in the ith step of the algorithm. We have the following:

Pr[output C] = Pr[E1 ∧ E2 ∧ · · · ∧ En−2]

= Pr[E1] · Pr[E2|E1] · Pr[E3|E1, E2] · . . . · Pr[En−2|E1, E2, . . . , En−3].

Letting k denote the number of edges crossing C in the original graph, we trivially have that
Pr[E1] = 1− k

total number edges
. Since C is, by assumption, a minimum cut, the degree of every

vertex must be at least k, which implies that the total number of edges must be at least
nk/2. This is because each of the n vertices has degree at least k, so the sum of degrees of
the vertices will be at least nk, but this double-counts all the edges, hence the factor of 2.
Hence we have that

Pr[E1] ≥ 1− k

nk/2
= 1− 2

n
=

n− 2

n
.

From Lemma 2.3, conditioned on E1, . . . , Ei−1, we now that C is a minimum cut of the graph
before the ith contraction, and hence

Pr[Ei|E1, E2, . . . , Ei−1] ≥ 1− 2

n− i + 1
=

n− i− 1

n− i + 1
.

Combining these terms we conclude

Pr[output C] ≥ n− 2

n
· n− 3

n− 1
· . . . · 2

4
· 1

3
=

2

n(n− 1)
,

where the last equality follows from observing that all numerators and denominators cancel
except the denominators of the first two terms, and numerators of the last two terms. �

Should we be happy with a probability of success of ≈ 2/n2? If we simply repeat the
above algorithm t = cn2/2 times, and return the smallest cut that was found in any of the t

5

runs, then the probability of failure becomes at most (1− 2
n2)cn

2/2 ≤ e−
2
n2 · cn2

2
= e−c, where

we used the trick from Lecture 1 where we noted that 1 − x ≤ e−x. So, this implies that
if we want a probability of success of, say, 0.9, we would need to perform O(n2 · n) edge
contractions—n for each of the O(n2) runs of the algorithm.1

How can we do better? One approach to improving this is based on the following in-
tuition: suppose we were told that a given run of the algorithm was not successful. If we
needed to guess which iteration destroyed the minimum cut, we would probably guess that
it was one of the later iterations. After all, the probability that our first contraction pre-
serves the minimum cut is at least n−2

n
≈ 1, whereas, even if everything has gone perfectly,

the probability (according to our pessimistic calculations) that the very last contraction is
successful might only be 1/3. This motivates the following idea: rather than repeating the
entire algorithm, including all the work we have done during the first few iterations (which
probably did not destroy the minimum cut), why not just re-do the last few edge contrac-
tions (with freshly chosen random choices for the edges to contract)? We’ll explore this idea
in more detail during our in-class exercises.

For even more improvements, check out [2], which gives a randomized algorithm for
min-cut that runs in time Õ(m).

Note: The material below on QuickSort is not covered in the lecture videos
or in class, and it’s optional reading.

3 Analysis of Quicksort with a Random Pivot

Many of you may have seen QuickSort and its analysis in CS161. We’re not going to spend
any time on it in class, but we’ve included some notes here since it’s a nice reminder of the
facts that:

1. Linearity of expectation is extremely powerful!

2. When analyzing the expectation of a random variable, it is often a good idea to repre-
sent that random variable as a sum of other random variables that are easy to analyze,
and apply linearity of expectation.

If you haven’t seen this analysis before, be sure to check it out; and even if you have, it’s a
great time for a refresher!

Recall the recursive Quicksort algorithm for sorting a list of n numbers. For clarity, we
describe the algorithm and its analysis assuming that the n numbers are all distinct (no
repetitions), though the algorithm and analysis naturally extend to the general case.

1In terms of running time, since we can execute one run of Karger’s algorithm in time O(|E|) with
appropriate data structures, the running time is O(n2|E|).

6

Algorithm 2
Quicksort (with Random Pivot)

Given set/list of n distinct numbers, S = (x1, . . . , xn):

1. If |S| = 0 return the empty list.

2. Otherwise, select i uniformly at random from {1, . . . , n}.

3. Compare every element of S to xi, forming two sets, S< and S> consisting
respectively of the number less than xi, and the numbers that are greater
than xi.

4. Return the list corresponding to the concatenation of
Quicksort(S<), (xi), Quicksort(S>).

The above algorithm, in the worst case, might require almost n2/2 comparisons if the
pivot that is chosen at every step of the recursion happens to be the minimum element of
the set. Nevertheless, as we argue below, in expectation, the number of comparisons is at
most 2n log n + O(n), which is extremely good.

Theorem 3.1 The expected runtime of the above algorithm is at most 2n log n + O(n).

Proof: To compute the expected number of comparisons, we will simply apply linearity
of expectation, and then analyze the expected number of times that every pair of inputs is
compared. For convenience, assume that the input set contains the numbers z1 < z2 < . . . zn.
First note that for any pair zi, zj, we either compare them 0 times, or once, since if we do
compare them at some iteration of the recursion, that means that zi or zj was a pivot, and
we will never compare that pair again, because the pivot is not included in the sets S< or
S>. Given this, by linearity of expectation, we have

E[# comparisons] =
n−1∑
i=1

n∑
j=i+1

Pr[zi is compared to zj at any point during the algorithm].

To analyze this, we just need to think about the probability that zi and zj ever get compared
during the algorithm.

One slick way of analyzing this is as follows: at every recursive execution of the algorithm,
zi and zj will both end up in the same set (either S< or S>) until the first time that an
element of the set Ri,j = zi, zi+1, . . . , zj−1, zj is chosen as the pivot. After the first time that
happens, zi and zj will be split up, and will never be able to be compared to each other.
Hence, the probability they are compared is exactly equal to the probability that, the first
time a number in Ri,j is chosen, it happens to be either zi or zj. Hence this probability is

7

exactly 2
|Ri,j | = 2

j−i+1
. The rest is just some tedious calculations:

E[# comparisons] =
n−1∑
i=1

n∑
j=i+1

2

j − i + 1

=
n−1∑
i=1

n−i+1∑
k=2

2

k
=

n∑
k=2

2

k
(n + 1− k)

= −2(n− 1) + (n + 1)
n∑

k=2

2

k

< 2(n + 1)(1 + log n) = 2n log n + O(n).

To get from the second-to-last line to the last line, we used the fact that the harmonic sum∑n
i=1

1
i

is between log n and 1+log n, since
∫ n

x=1
1
x

= log n, and
∫ n

x=1
1
x
<

∑n
i=1

1
i
< 1+

∫ n+1

x=1
1
x
.

�

References

[1] David R Karger. Global Min-cuts in RNC, and Other Ramifications of a Simple Min-
Cut Algorithm. In Symposium on Discrete Algorithms (SODA), volume 93, pages 21–30,
1993.

[2] David R Karger. Minimum cuts in near-linear time. Journal of the ACM (JACM),
47(1):46–76, 2000.

8

	Linearity of Expectation
	Karger's Min-Cut Algorithm
	High-Level Intuition
	The Algorithm

	Analysis of Quicksort with a Random Pivot

