
CS265, Winter 2021-2022

Class 7: Agenda, Questions, and Links

1 Announcements

• HW4 is out, due next Wednesday.

• Solutions for HW2 are posted (or will be posted very soon).

2 Lecture Recap and Questions?

Any questions from the mini-lectures or pre-class-quiz? (Metric Embeddings; Bourgain’s
Embedding)

3 Warm-Up

Group Work

Let G = (V,E) be a weighted, undirected graph, on n vertices with edge weights wuv

on the edge {u, v} ∈ E. Let d : V × V → R be the associated graph metric.

Explain how to efficiently find and apply a map f : V → Rk, for k = O(log2 n), so that∑
{u,v}∈E ‖f(u)− f(v)‖1∑
{u,v}∈(V

2)
‖f(u)− f(v)‖1

≤ O(log n)

∑
{u,v}∈E d(u, v)∑
{u,v}∈(V

2)
d(u, v)

holds with high probability. Above,
(
V
2

)
refers to the set of all unordered pairs {u, v} for

u, v ∈ V and u 6= v.

4 Minimum Cuts

[Will present on the whiteboards, summary is below]
For a graph G = (V,E), define

φ(G,S) =
|E(S, S̄)|
|S||S̄|

,

and
φ(G) = min

S⊂V,S 6=∅,V
φ(G,S),
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where above S̄ := V \ S denotes the complement of S, and E(S, S̄) denotes the set of edges
that have one endpoint in S and one endpoint in S̄.

Intuitively, if φ(G,S) is small, then S is pretty “disconnected” from S̄. Notice that the
denominator, |S||S̄|, is the number of edges that would be between S and S̄ in the complete
graph, so φ(G,S) is the fraction of possible edges between S and S̄ that actually exist in G.

Finding S to minimize φ(G,S) is useful, for example, in clustering applications. However,
it’s also NP-hard. Today we’ll see a randomized algorithm to find an S so that φ(G,S) is
approximately minimized. More precisely, we’ll find S so that φ(S,G) ≤ O(log n)φ(G).

Question: How is this definition of φ(G) different/better than simply asking for the
sparsest cut? (Recall we saw a randomized algorithm for the sparsest cut back in Week
1. . . )

4.1 Connection to metrics
Group Work

In this group work, you will show that

φ(G) = min
f

∑
{u,v}∈E ‖f(u)− f(v)‖1∑
{u,v}∈(V

2)
‖f(u)− f(v)‖1

, (1)

where the minimum is over all functions f : V → Rk for some k, so that f takes on
at least two distinct values. (This last bit is needed so that the denominator doesn’t
vanish).

1. Show that

φ(G) = min
f :V→{0,1}

∑
{u,v}∈E |f(u)− f(v)|∑
{u,v}∈(V

2)
|f(u)− f(v)|

,

where the minimum is over all functions f : V → {0, 1} so that f takes on both
values 0 and 1. (The difference between this and the expression above is that f
maps to {0, 1} instead of Rk for some k).

Hint: Consider mapping functions f to sets S by the relationship S = {u : f(u) =
1}.

2. Think about why the above extends to show that

φ(G) = inf
f :V→R

∑
{u,v}∈E |f(u)− f(v)|∑
{u,v}∈(V

2)
|f(u)− f(v)|

,

where now the minimum is over f : V → R instead of f : V → {0, 1}.
(Don’t worry about a formal proof here, just kind of convince yourself intuitively
that this is true).
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Hint: Using part (a), it suffices to show that the infimum over all f : V → R is
actually attained by some f that maps vertices in V to {0, 1}. To see this, consider
the following steps:

• Suppose that f : V → R takes on three distinct values, a < b < c. Consider
a new function fx : V → R, so that fx(u) = x if f(u) = b, and fx(u) = f(u)
otherwise. That is, fx(u) just replaces the value b with x. Show that either

R(fa) ≤ R(f) or R(fc) ≤ R(f),

where

R(f) =

∑
{u,v}∈E |f(u)− f(v)|∑
{u,v}∈(V

2)
|f(u)− f(v)|

.

(That is, by sliding the middle value b towards either a or c, you can decrease
this quantity.)
Sub-hint: when you vary x ∈ [a, c], you can get rid of the absolute values in
R(fx). Looking at a small example might be helpful.

• Argue that the above logic implies that there’s an f that attains the infemum
that takes on only two values.

• Argue that those two values may as well be 0 and 1.

3. Think about why the above extends to show that

φ(G) = min
f :V→Rk

∑
{u,v}∈E ‖f(u)− f(v)‖1∑
{u,v}∈(V

2)
‖f(u)− f(v)‖1

,

where the minimum is over all functions f : V → Rk for any k.

Hint: You may want to use the inequality that
∑

i ai∑
i bi
≥ mini

ai
bi

for ai, bi > 0.

4.2 A randomized algorithm

Group Work

1. First, all quietly read the following: Based on the result that we got in the first
group work, we might think of the following approach:

Find f : V → Rk to minimize

R(f) :=

∑
{u,v}∈E ‖f(u)− f(v)‖1∑
{u,v}∈(V

2)
‖f(u)− f(v)‖1
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Unfortunately, this doesn’t turn out to be an easy optimization problem to solve.
Instead, we’ll consider the optimization problem:

Find values du,v ∈ R for all u 6= v ∈ V to minimize

Q(d) :=
∑
{u,v}∈E

du,v

subject to:

• du,v = dv,u ≥ 0 for all u, v

• du,v + dv,w ≥ du,w for all u, v, w

•
∑
{u,v}∈(V

2)
du,v = 1

It turns out that this problem can be solved efficiently, using linear programming.
(If you don’t know what that is, it’s okay, all that matters now is that we can find
~d to minimize this efficiently).

2. Suppose that d∗ is the minimizer of the problem above.

Explain why Q(d∗) ≤ φ(G).

3. Find a randomized algorithm to approximate φ(G). More precisely, give a random-
ized algorithm that finds f : V → Rk so that, with high probability,∑

{u,v}∈E ‖f(u)− f(v)‖1∑
{u,v}∈(V

2)
‖f(u)− f(v)‖1

≤ O(log n)φ(G).

Hint: Your warm-up exercise might be relevant.

Hint: If it comes up, you may assume that Bourgain’s embedding works just fine on
pseudo-metrics, which are functions d(u, v) that obey all of the axioms of metrics
except that maybe d(u, v) = 0 for u 6= v.

4. Given f as in the previous part, explain how to efficiently find a set S ⊂ V so that

φ(G,S) ≤ O(log n)φ(G).

Hint: Our proof in the first group-work was somewhat algorithmic...
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