
CS265, Fall 2020

Class 8: Agenda, Questions, and Links

1 Announcements

• HW4 due Wednesday!

2 Recap and Questions

We’ll do a quick recap of the JL lemma and the (approximate) nearest neighbors problem.

3 A better scheme for approximate nearest neighbors,

and locality sensitive hashing

[A bit of lecture with setup. Summary below. This is also covered in the lecture notes.]
Recall the setup for c-approximate-nearest neighbors. We have a set S of size n, and

for today S ⊂ Sd lives on the surface of the d-dimensional sphere. That is, S =
{x1, . . . , xn}, so that xi ∈ Rd+1 and ‖xi‖2 = 1 for all i ∈ [n].

Our goal is to come up with some data structure to store the xi’s, so that:

• We don’t use too much space (ideally, use space poly(n), where the exponent in the
polynomial doesn’t depend on d).

• Given y ∈ Sd, we can find xi ∈ S so that

‖xi − y‖2 ≤ c ·min
j
‖xj − y‖2

in time sublinear in n.

3.1 Nearest-Neighbors vs. Near Neighbors

[A bit of lecture, summary below and also in the lecture notes.]
Consider the following problem, called (r, c)-near-neighbors. We have a set S ⊂ Sd of

size n as before, and our goal is to come up with some data structure (that doesn’t use too
much space) to store the xi’s, so that the following holds.

Given y ∈ Sd so that minj ‖xj − y‖2 ≤ r, we can find xi ∈ S, in sublinear time,
so that ‖xi − y‖2 ≤ cr.

It turns out that if we can solve (r, c)-near-neighbors (for a decent range of r’s) then we
can solve c-nearest-neighbors.

1

3.2 A solution to (r, c)-near-neighbors

[A bit of lecture for setup; summary below and also in the lecture notes.]
Let s, k be parameters, chosen as follows:

s =
√
n, k =

π log n

2r

For i = 1, . . . , s, let Ai ∈ Rk×d+1 have i.i.d. N (0, 1) entries. For y ∈ Sd, define

hi(y) = sign(Aiy),

where for a vector a ∈ Rk, sign(a) ∈ {±1}k is just the vector whose i’th entry is +1 if ai > 0
and −1 if ai ≤ 0.

Group Work

1. Consider a hash function hi : Sd → {±1}k as defined above. Explain why “hi(x) =
hi(y)” has the following geometric meaning:

Imagine choosing k uniformly random hyperplanes in Rd, and using them
to slice up the sphere Sd like this:

m

YI:¥¥Y*m
.

m

YI:¥¥Y*m
.

Then hi(x) = hi(y) if and only if x and y are in the same “cell” of this
slicing. For example, in the picture below hi(x) = hi(y) 6= hi(z).

÷÷÷
hiCxI * hi ly) ⇒ some

hyprplanedoesth§
Hint: Use the spherical symmetry of the Gaussian distribution.

2

2. Explain why, for x, y ∈ Sd, and for any i = 1, . . . , s,

Pr[hi(x) = hi(y)] =

(
1− angle(x, y)

π

)k

,

where angle(x, y) = arccos(xTy) is the arc-cosine of the dot product of x and y,
aka, the angle between x and y.

Hint: Think about the geometric intuition in the plane spanned by x and y.

3. Suppose that x, y ∈ Sd. Fill in the blank, using the previous part:

Pr[∀i ∈ {1, . . . , s}, hi(x) 6= hi(y)] =

(Don’t worry about simplifying, you’ll do that in the next part).

4. Let x, y ∈ Sd and suppose that the angle between x and y is pretty small. Using
our choices of s and k above, along with extremely liberal use of the approximation
that 1− x ≈ e−x for small x, convince yourself that

Pr[∀i ∈ {1, . . . , s}, hi(x) 6= hi(y)] ≈ exp
(
−n1/2−angle(x,y)/(2r)) .

5. Fill in the blanks (assuming that your approximation from the previous step is
valid):

(a) If angle(x, y) ≤ r, then

Pr[∃i ∈ {1, . . . , s} so that hi(x) = hi(y)] ≥

(b) If angle(x, y) ≥ 5r, then

Pr[∃i ∈ {1, . . . , s} so that hi(x) = hi(y)] ≤ .

Group Work: Solutions

1. Fix i. For the j’th row aj of Ai, consider the hyperplane Pj = {x ∈ Sd : aTj x = 0}.
If the j’th coordinate of Aix is negative, this means that hi(x) lies on one side of
Pj, and if that coordinate is positive, it lies on the other. Thus, if hi(x) = hi(y),
then x and y lie on the same side of each of the hyperplanes Pj defined by the rows
of Ai.

By the spherical symmetry of Gaussians, each one of these hyperplanes is uniformly
random. Thus, we get the geometric intuition from the exercies.

2. Because of the geometric intuition from above, the probability over hi that hi(x) =
hi(y) is the probability that none of the k hyperplanes go separate x and y. The

3

probability that a single hyperplane separates x and y is the angle between x and
y divided by π. (This is clear if you think about the projection onto the plane
spanned by x and y; our random hyperplane is just a random line through the
origin in this projection).

Thus, the probability that none of the k hyperplanes separate x and y is (1 −
angle(x, y)/π)k, using the independence of the k hyperplanes.

3. The probability that hi(x) 6= hi(y) for all i ∈ [s] is, by the previous part,

(1− (1− angle(x, y)/π)k)s.

4. Recall that we chose s =
√
n and k = π log n/(2r). If we assume that the angle

between x and y is pretty small compared to π, then we can approximate

(1− angle(x, y)/π)k ≈ e−angle(x,y)k/π = e−angle(x,y) logn/(2r) = n−angle(x,y)/(2r)

with the choice of k. Then, the whole probability of collision from the previous
part is approximately

e−sn
−angle(x,y)/(2r)

= exp(−n1/2−angle(x,y)/(2r)).

5. (a) If angle(x, y) ≤ r, then

Pr[∃i ∈ [s], hi(x) 6= hi(y)] . exp(−n1/2−1/2) = 1/e,

so
Pr[∃i ∈ [s], hi(x) = hi(y)] ≥ 1− 1/e

or so.

(b) If angle(x, y) ≥ 5r, then

Pr[∃i ∈ [s], hi(x) 6= hi(y)] & exp(−n1/2−5/2) = exp(−n−2) ≈ 1− 1/n2,

so
Pr[∃i ∈ [s], hi(x) = hi(y)] = O(1/n2).

Suppose that H is a family of hash functions h : Sd → D. We say that H is a locality
sensitive hash (LSH) family (for the Euclidean metric, with some parameters R,C, p1, p2) if:

• If ‖x− y‖2 ≤ R, then h(x) = h(y) with probability at least p1.

• If ‖x− y‖2 ≥ CR, then h(x) = h(y) with probability at most p2.

Thus, if we pretend that “angle(x, y)” was “‖x − y‖2”, we have just shown that the family
of random hash functions from which we chose the hi is a locality-sensitive hash family.

4

(Actually, formally we showed something a bit different, since we looked at the probability
of any collision over s functions drawn from the family).

In the next two problems, you’ll see how to use this LSH family to solve the approximate
near-neighbors problem.

Group Work

6. Pretend that “angle(x, y)” was “‖x− y‖2” everywhere.

Come up with a data structure that uses your result from problem 5b and show
that it gives a (c, r)-near-neighbors scheme for some constant c. (It’s okay if each
query succeeds with probability 1/2 or something like that).

Hint: As your data structure, consider storing s hash tables, one for each hi. Hash
each item x ∈ S into these tables. Given a query y, in what bucket(s) should you
look for a close-by x ∈ S?

7. Explain why it’s okay to pretend that “angle(x, y)” is “‖x − y‖2,” perhaps at the
cost changing the constants around.

Hint: You can use the fact that

2

π
angle(x, y) ≤ ‖x− y‖2 ≤ angle(x, y)

for any x, y ∈ Sd.
8. (If you have time) What is the amount of space that your data structure uses?

How much time does a query take?

Group Work: Solutions

1. Following the hint, our data structure will store s hash tables, one for each hi. (It
will also store the hi). Then we will hash each x ∈ S in each of the s tables (so,
each table will include a pointer to x in some cell).

To query on y, we do:

• For i = 1, 2, . . . , s:

– Compute hi(y).

– If there is some x ∈ S so that hi(x) = hi(y), return x.

To see why this works, notice that if ‖x − y‖2 ≤ r, then with probability at least
1−1/e (from the above) there will be some i so that hi(x) = hi(y). So we’ll definitely
return something. To make sure that we don’t return something incorrect, suppose
that z ∈ S has ‖x − z‖2 ≥ 4r. Then by (b) above, the probability that there
exists some i ∈ [s] so that hi(x) = hi(z) is at most 1/n2. By a union bound, the

5

probability that there is any such z is at most O(1/n). Thus, with probability at
least 1−1/e−O(1/n), we will return something, and that something will be within
5r of y.

2. In 5(a), because of the hint, we can replace angle(x, y) ≤ r with ‖x− y‖2 ≤ πr/2.
In 5(b), we can just replace angle(x, y) ≥ 5r with ‖x − y‖2 ≥ 5r. Thus, if we set
r′ ← πr/2, we can do the whole thing with r′, and instead of 5 our constant c
becomes 5π/2.

3. The amount of space our data structure takes up is:

• s different k× d matrices Ai (space skd = O(
√
n · (log n/r)d) = O(d

√
n log n))

• s hash tables, each with 2k buckets: O(
√
n · 2π logn/(2r)) = poly(n) if r is con-

stant.

• The elements of S themselves: O(nd).

So the total space is poly(n, d) as desired.

The query time is:

• s different k × d matrix vector multiplies: O(skd) = O(d
√
n log n) time.

• Going through all s hash tables and look in bucket hi(y): time O(s) = O(
√
n).

So the total query time is O(d
√
n log n), which is o(n) as desired if d isn’t too big.

Hooray!

Group Work

If you finish the rest, here’s some bonus stuff to think about!

1. Why does a solution to (r, c)-near-neighbors give a solution to c-approximate-
nearest-neighbors?

2. What happens if our data don’t live on the surface of Sd? Explain how to still use
the analysis above.

3. Can you think of a way to come up with a better LSH family?

4. Can you think of a way to solve approximate near(est) neighbors without going
through LSH? Is LSH necessary?

Group Work: Solutions

1. Pick a very small ε > 0. Imagine running the (r, c)-near-neighbors algorithm for
r = ε, r = 2ε, r = 4ε, . . . , r = 2iε, . . . , r = 2, and stop when your (r, c)-near-
neighbors algorithm first returns a legit answer. Then return that answer.

First, suppose that minj ‖xj − y‖2 ≤ ε. In that case, our very first call to near-

6

neighbors will return some i so that ‖xi − y‖2 ≤ cε.

On the other hand, suppose that ε < minj ‖xj − y‖2 ≤ 2. (Notice that since
everything lives on S1, nothing is further than 2 from anything else). Say that
minj ‖xj − y‖2 ∈ (ε2t, ε2t+1]. Then the call to near-nbrs when r = ε2t+1 will return
xi so that ‖xi − y‖2 ≤ cε2t+1 ≤ 2cεminj ‖xj − y‖2.
Thus, if this procedure returns xi, the distance ‖y−xi‖2 is bounded by the maximum
of these two cases, which is bounded by the sum of these two cases, and that’s
2cminj ‖xj − y‖2 + cε ≤ 2c(minj ‖xj − y‖2 + ε). So we solve the 2c-nearest-nbrs
problem, assuming that ε is sufficiently small.

Note that this doesn’t exactly solve the ANN problem (e.g., if you query some x ∈ S,
the guarantees are not the same), but it can be made to work. See “Approximate
Nearest Neighbor: Towards Removing the Curse of Dimensionality” by Har-Peled,
Indyk and Motwani (ToC 2012).

2. If the data don’t live on Sd, then it turns out you can project them onto Sd+1

without too much distortion.

3. There are indeed ways! Check out “Near-Optimal Hashing Algorithms for Approx-
imate Nearest Neighbor in High Dimensions” by Andoni and Indyk. (CACM 2008).
https://www.fi.muni.cz/~xkohout7/Research/clanky_cizi/lsh/indyk.pdf One
goal is to improve the exponent on the query time. That is, if the query time is
O(nρ) for ρ < 1, we’d like to make ρ as small as possible. For LSH-based schemes,
the paper linked above shows how to make ρ = 1/c2+o(1), where c is the parameters
in the c-approximate-NN problem.

4. LSH is not necessary, and in fact you can (provably) do better without it! See
https://www.cs.columbia.edu/~andoni/papers/subLSH.pdf for more details.

7

https://www.fi.muni.cz/~xkohout7/Research/clanky_cizi/lsh/indyk.pdf
https://www.cs.columbia.edu/~andoni/papers/subLSH.pdf

	Announcements
	Recap and Questions
	A better scheme for approximate nearest neighbors, and locality sensitive hashing
	Nearest-Neighbors vs. Near Neighbors
	A solution to (r,c)-near-neighbors

