
CS265, Winter 2022

Class 9: Agenda, Questions, and Links

1 Announcements

• HW5 is out, due next Wednesday.

2 Lecture Recap and Questions?

Questions from minilectures and pre-class quiz? (Compressed sensing; RIP; Gaussian ma-
trices have the RIP with high probability.)

3 More matrices with the RIP whp

Group Work

1. Let ε ∈ (0, 1/4). Suppose that A ∈ Rm×n is a distribution on matrices so that, for
some constant c:

∀x ∈ Rn,Pr {|‖Ax‖2 − ‖x‖2| ≥ ε‖x‖2} ≤ 2 exp(−cmε2). (1)

(a) Is it the case that A is a good JL transform (aka, for any set S ⊆ Rn of size N ,
‖A(x− y)‖2 = (1± ε)‖x− y‖2 with high probability), with m = O(ε−2 logN)?

(b) Is it the case that, with high probability, A has the (k, ε)-RIP with m =
O(ε−2k log n)?

2. Let A ∈ (±1)m×n be a matrix where every entry is independently selected to be
either +1 or −1. In this question, you’ll show that for a cleverly chosen constant
s, the matrix sA satisfies (1). (Notice that sA is much easier to generate than a
random Gaussian matrix, and is also nicer to compute with).

(a) What should s be as a function of m and n, so that for any vector x ∈ Rn,
E‖sAx‖22 = ‖x‖22?

(b) For a vector x ∈ Rn with ‖x‖2 = 1, let Z denote the random variable represent-
ing the inner product of x a row of matrix A. Namely Z =

∑n
i=1 Yixi where Yi

is independently chosen to be ±1 with probability 1/2 each, and xi denotes the
ith coordinate of x. The following bound on the moment generating function
of Z2 is not too hard (but a bit tedious) to prove: for any t ∈ (0, 1/3),

E[etZ
2

] ≤ 1 + t + 12t2.
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Using this bound on the moment generating function of Z2, prove that

Pr[‖sAx‖22 ≥ (1 + ε)] = Pr[Z2
1 + Z2

2 + . . . + Z2
m ≥ (1 + ε)m] ≤ e−ε2m/100,

where the Zi’s represent independent realizations of the random variable Z.
Hint: Proceed as in the proof of Chernoff bounds by multiplying both sides by
t, exponentiating, applying Markov’s inequality, then using the given bounds on
the moment-generating function of each Zi.
Hint: In the final step, you’ll want to plug in an ’optimal’ value of t. Try
something like t = ε/24 to get the math to work out cleanly.

(c) Have we proved that sA satisfies property (1)? If not, what is missing?

3. Here are a few “challenge” questions to think about:

(a) What other distributions on a matrix A can you come up with (other than i.i.d.
Gaussians and i.i.d. ±1/

√
m entries) that are (a) natural and (b) seem like

they’d satisfy (1)? For example, what about any matrix with i.i.d. mean-zero
entries? What about any matrix with i.i.d. mean-zero bounded entries? (i.e.,
the entries should never be larger than 100).

(b) Suppose that A has the RIP. Consider a matrix A ·D, where D is a diagonal
matrix with i.i.d. mean-zero ±1 entries on the diagonal. Show that AD satisfies
(1), up to log factors.
Hint: This is pretty tricky to do quantitatively, but you may be able to come
up with some intuition for why it should be true qualitatively.
Hint: For a complete solution, check out this paper: https: // arxiv. org/

pdf/ 1009. 0744. pdf

Group Work: Solutions

1. Yes, both of these are true. If you go back to our proof that Gaussian matrices are
good JL transforms and that they have the RIP, this is the only property we use.

2. (a) We should set s = 1/
√
m. By linearity of expectation, E [‖Ax‖22] = mE [(

∑n
i=1 Yixi)

2]
where the Yi’s are independent ±1 random variables that are +1 and −1 with
probability 1/2 each. Expanding out the terms in the expression being squared,
we have

E

[
(

n∑
i=1

Yixi)
2

]
= E

[∑
i,j

xixjYiYj

]
=

∑
i,j

xixjE [YiYj] =
∑
i

x2
i = ‖x‖22,

since for i 6= j,E [YjYi] = 0. Hence E [‖Ax‖22] = m‖x‖22, so if we multiply A by
1/
√
m, we will cancel this factor of m.
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(b) For any t > 0,

Pr[‖sAx‖22 ≥ (1+ε)] = Pr[
∑
i

Z2
i ≥ (1+ε)m] = Pr[et

∑
Z2
i ≥ etm(1+ε)] ≤

∏
i E

[
etZ

2
i

]
etm(1+ε)

.

Plugging in the fact that E
[
etZ

2
i

]
≤ 1 + t + 12t2, yields the following:

∏
i E

[
etZ

2
i

]
etm(1+ε)

≤ (1 + t + 12t2)m

etm(1+ε)
≤ em(t+12t2)

etm(1+ε)
= em(12t2−ε).

Plugging in t = ε/24 and simplifying yields a bound of e−mε2 3
4·24 , as desired.

(c) The main thing we are missing is a bound on the probability that ‖sAx‖22 ≤
(1− ε)‖x‖, though this can be proved analogously to the upper bound, in the
same way that we proved the lower Chernoff bounds.

4 Connected Components in Random Graphs

As one final super-cool application of Chernoff bounds, in this problem we will prove a really
cool property of the sizes of the connected components in a natural random graph model.

Let Gn,p denote the Erdos-Renyi random graph model, where each edge exists (indepen-
dently) with probability p = c/n for some constant c that does not vary with n.

Theorem 1. Let G be drawn from Gn,p, with p = c/n for some constant c :

• If c < 1, with probability tending to 1 as n → ∞, the largest connected component of
G has size O(log n).

• If c > 1, with probability tending to 1 as n→∞, the largest connected component of G
has size f(c)n±o(n), where f(c) is a constant, independent of n, satisfying f(c) ∈ (0, 1)
for all c > 1.1, and the second-largest connected component of G has size O(log n).

Group Work

1. Spend one minute pondering why we shouldn’t expect any “medium” sized con-
nected components. What is the intuition behind the above theorem?

2. In this problem we prove the c < 1 case of the above theorem.

1f(c) can actually be defined fairly cleanly: Suppose on day 1, we start with 1 rabbit. On each day,
each existing rabbit will have a number of offspring drawn from (independent) Poisson random variables of
expectation c and then the original rabbits die, leaving only the offspring. f(c) is the probability that this
process never dies out (ie one minus the probability that there is some day with no more rabbits).
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(a) For a given vertex v, prove that

Pr[v in connected component of size ≥ k] ≤ Pr [X ≥ k − 1] ,

where X is distributed according to Binomial[k ·n, c/n]. [Hint: consider doing
a breadth-first search of the neighborhood of v in the graph.]

(b) Assuming the above, using a union bound over Chernoff bounds, prove that

Pr[there is a connected component of size ≥ 10 log n

(1− c)2
] ≤ 1/n.

3. In this problem, we prove the c > 1 case of the above theorem.

(a) Given a random node v in the graph, prove that for any k satisfying 100c logn
(c−1)2

≤
k ≤ n3/4, the probability that the connected component of v has size k is no
more than n−10.
Hint: Consider a sort of breadth-first search that starts with a set that contains
only v, then “marks” v and adds all the neighbors of v to the set , and then
iteratively continues by “marking” an unmarked node of the set and adding all
its neighbors to the set. Suppose we have “marked” k nodes, what is the chance
that there are no more “unmarked” nodes in our set? Based on this, prove that,
with high probability, if the connected component of v has size at least k, it will
have size at least k + 1. Be mindful of the way you condition events.

(b) Prove that we do not expect any connected components to have size in the
interval [100c logn

(c−1)2
, n3/4].

(c) Prove that with probability tending to 1 as n → ∞, there is at most one
connected component of size ≥ n3/4. [Hint: conditioned on the neighborhood
of both v and u having size at least n3/4, show that the probability that they are
not connected is tiny, then union bound over the at most n such neighborhoods.]

(d) Challenge: Show that the size of the large component is within o(n) of its
expectation with probability tending to 1 as n→∞. [Hint: bound the variance
of the number of nodes that are in “small” components of size at most 100c logn

(c−1)2
,

then use Chebyshev’s inequality.]

Group Work: Solutions

1. The lack of “medium-sized” components, for both c < 1 and c > 1 might seem
intuitive, though a nice challenge is to try to figure out what happens in the regime
where c ≈ 1 (e.g. where c = 1 + 1/

√
n, for example. . . .

2. The next three parts will all be based on the following careful way of revealing
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the connected component of a single vertex, v. We will explore v’s connected
component in a way that carefully ensures that we are aware of which edges in the
graph have been “explored”, and which edges we haven’t yet looked at. [This will
avoid the issue that arises if we sloppily try to condition on properties of the size
of v’s connected component, after which it will no longer be true that each edge is
independently present with probability p.]

We do this exploration as follows: We will proceed iteratively, and step t, we will
have two sets, At and Bt, where At corresponds to nodes in v’s connected component
for which at time t we’ve already checked all n − 1 potential edges between them
and the other nodes, and Bt corresponds to nodes that we have found to be in v’s
connected component by time t, but for which we haven’t yet checked to see which
neighbors they have. At time t = 0, we start with B0 = {v}, and A0 = ∅. At t = 1,
we set A1 = {v} and B1 to be all the neighbors of v. In general, at step t, we select
an arbitrary node wt ∈ Bt−1 (for example, the node of smallest index, if we number
the nodes 1 through n), and add all its neighbor that aren’t already in At−1 or Bt−1

to set Bt−1 to form Bt. Namely Bt = Bt−1∪neighbors(wt) \At−1. We then remove
wt from Bt and set At = At−1 ∪ {wt}. We continue this process until the set Bt−1

is empty, in which case At−1 must be v’s entire connected component.

To analyze this process, let Xi denote the number of nodes added to Bi−1 to form
Bi. Because we haven’t looked at any potential edges from node wi except those
going to a node in set Ai−1, and we are only adding neighbors of wi that aren’t
already in sets Ai−1 or Bi−1, it is the case that Xi is distributed as a binomial
consisting of n−

∑i−1
j=1 Xj tosses of a p-biased coin: Bin(n−

∑i−1
j=1Xi, p).

We will now solve this part of the problem. Let c < 1, and note that if v’s connected
component has size greater than k, then it must be the case that X1 > 0, and
X1 + X2 > 1, . . . , and

∑k
i=1Xi > k. (If this wasn’t the case—for example, if

X1 = 0, then the connected component has size 1. If X1 > 0 but X1 +X2 = 1 then
the connected component has size 1, etc. ) Now, note that the probability that
these things all happen is at most the probability that

∑k
i=1 Yi > k, where each Yi

is an independent binomial random variable corresponding to n tosses of a p-biased
coin. This is true because each Xi consists of a binomial of at most n tosses of
a p-biased coin, and so flipping a few extra coins can only help the probability of
getting more “heads”. To wrap things up, note that Y =

∑k
i=1 Yi is distributed

exactly like Bin(kn, p), and if p = c/n then its expectation is ck. So for c < 1,
we have Pr[Y > k] = Pr[Y > (1/c)E [Y ]], and we can bound this probability via
a standard Chernoff bound. In the case that c < 1 is a constant, the Chernoff
bound will give us a probability of the form e(− f(c)k) for some function f of c, in
which case for k some large constant time log n, will give us a probability less than,
say, 1/n2, in which case we can do a union bound over the at most n connected
components to prove that with probability tending to 1 as n → ∞, the largest
connected component has size O(log n). [Exercise: pin down the precise Chernoff
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bound, to get the right dependence on c...]

3. For the next part, the analysis of c > 1, for simplicity we’ll give the argument in the
case that c = 2. We leverage the same construction of set At, Bt as described above.
Assuming that v’s connected component has size at least k, it follows that Bk−1

cannot be empty, in which case Bk =
∑k

i=1Xi. If this sum is less than n3/4, then each
term in it has the form Bin(m, p), where m > n− n3/4, which is greater than 0.9n
for large n. Additionally, the assumption on the partial sums of these binomials, ie
X1 > 0, X1 + X2 > 1 etc., can only increase the probability that this sum is large.
Hence the probability that |Bk| = 0 is at most the probability that a sum of k
independent binomials Bin(0.9n, 2/n) is at most k. [Recall we are assuming c = 2
for simplicity.]So, thisprobabilityisboundedbyPr[Bin[0.9kn, 2/n] ≤ k] < Pr[W <
(1−0.4)E [W ]], where W is distributed according to Bin[0.9kn, 2/n]. By a standard
Chernoff bound, this probability is inverse exponential in E [W ] = 1.8k, and hence
as long as k is a large constant times log n, this probability is much less than 1/n3,
and we can union bound over the O(n) choices of such k, showing that for a single
connected component, the probability it has size between O(log n) and n3/4 is at
most O(1/n2), and thenalso union bound over the O(n) connected components.
[Note that we assumed that none of the partial sums of Xi’s exceeded n3/4, which is
a fine assumption because if that isn’t the case, the connected component already
has size at least n3/4, which is what we want!!]

4. To show that any two large connected components (ie components of size ≥ n3/4

must actually be connected, the following does NOT work: consider two such con-
nected components, and now observe that there are≈ n3/2 possible edges connecting
them, and hence the probability none of these exist is (1 − c/n)n

3/2
= o(1). That

approach is fatally flawed because by assuming you start with two large connected
components, you are implicitly already implying that you’ve looked to see which
edges are present, and hence those potential n3/2 edges connecting the two compo-
nents have already been examined, and don’t actually have any randomness left!!
For example, with probability > 0.9999 there DO exist two sets of Θ(n) nodes that
are disconnected from each other—just take the Θ(n) nodes of degree 0 and divide
this into two equal-sized sets. Despite there being ≈ n2 potential edges between
these two sets, the sets are disconnected.

The moral of the above is that we need to be careful to make sure that if we make
an argument of the form “surely some of these potential edges exist”, we need to
explicitly construct things in such a way that we haven’t peeked at the potential
edges before making that claim.

One nice way to do this follows the same strategy of forming sets At, Bt. Imag-
ine doing this starting from two nodes, v and w, where Av

t , B
v
t denote the sets

corresponding to v and Aw
t , B

w
t correspond to the sets spawned by w. Consider

iteratively building these sets for t = 1, 2, . . . and stopping the first time one of
the following things happens: 1) t = n3/4, 2) the neighborhoods have already been
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found to intersect, namely (Av
t ∪Bv

t ) ∩ (Aw
t ∪Bw

t ) 6= ∅, or 3) one of the neighbor-
hoods is fully discovered, e.g. Bv

t = ∅. The only stopping condition we need to
worry about is 1). If that occurs, then, with high probability (as argued above)
for t = n3/4, we have |Bv

t | = Θ(n3/4) and |Bw
t | = Θ(n3/4). Now, if Bv

t and Bw
t are

disjoint, then we haven’t yet looked at any of the Θ(n3/2) potential edges between
these two sets (and if they do intersect, then the v and w must be in the same
connected component anyway...)!! So now we can safely argue that the probability
that none of these m = Θ(n3/2) edges exist is actually (1 − c/n)m = o(1/n3), and
hence we can union bound over the at most O(n2) pairs of connected components.
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