
Problem Set 2 CS265, Autumn 2022
Due: 10/14 (Friday) at 11:59pm on Gradescope

Please follow the homework policies on the course website.

1. (8 pt.) [Counting small cuts.]

Recall that a cut of an undirected graph G = (V,E) is a partition of the vertices V into
nonempty disjoint sets A and B. A min cut of G is a cut that minimizes the number of edges
that cross the cut (have one endpoint in A and one in B).

In the following problems, assume G is a connected graph on n vertices (i.e., there is no cut
with 0 edges that cross it).

(a) (2 pt.) A graph may have many possible min cuts. Prove that G has at most n(n−1)/2
min cuts.

(b) (2 pt.) Show that part (a) is tight; for every n ≥ 2, give a connected graph on n vertices
with exactly n(n− 1)/2 min cuts.

(c) (4 pt.) Let α be a positive integer. Suppose that any min cut of G has k edges that
cross the cut. An α-small cut of G is a cut that has at most αk edges that cross the
cut. Prove that the number of such cuts is at most O(n2α).

[Note: If you find it easier, you’ll still get full credit if you prove a bound of O((2n)2α).]

[HINT: Consider stopping Karger’s algorithm early and then outputting a random cut
in the contracted graph. What is the probability that this returns a fixed α-small cut of
G? ]

(d) (0 pt.) [Optional: this won’t be graded] Let f(n, α) be the maximum number of
α-small cuts that an n vertex graph can have. What are the tightest upper and lower
bounds you can find for f(n, α)?

2. (12 pt.) [Tightness of Markov’s and Chebyshev’s Inequalities]

(a) (4 pt.) Show that Markov’s inequality is tight. Specifically, for each value c > 1,
describe a distribution Dc supported on non-negative real numbers such that if the
random variable X is drawn according to Dc then (1) E[X] > 0 and (2) Pr[X ≥ cE[X]] =
1/c.

(b) (4 pt.) Show that Chebyshev’s inequality is tight. Specifically, for each value c > 1,
describe a distribution Dc supported on real numbers such that if the random variable
X is drawn according to Dc then (1) E[X] = 0 and Var[X] = 1 and (2) Pr[|X −E[X]| ≥
c
√

Var[X]] = 1/c2.

(c) (4 pt.) [One-sided version of Chebyshev’s Inequality] Prove a one-sided bound on the
distribution of a random variable X given its variance. That is, if Var[X] = 1, what the
best upper bound on Pr[X − E[X] ≥ t]? Give your answer in terms of t. Prove your
bound (a) is true and (b) is tight by coming up with a variable X with distribution Dt

and variance 1 for which Pr[X − E[X] ≥ t] equals your answer.
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3. (0 pt.) [This whole problem is optional and will not be graded.] In this problem,
you’ll analyze a different primality test than we saw in class. This one is called the Agrawal-
Biswas Primality test.

Given a degree d polynomial p(x) with integer coefficients, for any polynomial q(x) with
integer coefficients, we say q(x) ≡ t(x) mod (p(x), n) if there exists some polynomial s(x)
such that q(x) = s(x) · p(x) + t(x) mod n. (Here, we say that

∑
i cix

i =
∑

i c
′
ix
i mod n if

and only if ci = c′i mod n for all i.) For example, x5 +6x4 +3x+1 ≡ 3x+1 mod (x2 +x, 5),
since (x3)(x2 + x) + (3x+ 1) = x5 + x4 + 3x+ 1 ≡ x5 + 6x4 + 3x+ 1 mod 5.

Agrawal-Biswas Primality Test.
Given n:

• If n is divisible by 2,3,5,7,11, or 13, or is a perfect power (i.e. n = cr for integers c and r)
then output composite.

• Set d to be the smallest integer greater than log n, and choose a random degree d polynomial
with leading coefficient 1:

r(x) = xd + cd−1x
d−1 + . . .+ c1x+ c0,

by choosing each coefficient ci uniformly at random from {0, 1, . . . , n− 1}.

• If (x+ 1)n ≡ xn + 1 mod (r(x), n) then output prime, else output composite.

Consider the following theorem (you can assume this if you like, or for even more optional
work, try to prove it!):

Theorem 1 (Polynomial version of Fermat’s little theorem).

• If n is prime, then for any integer a, (x− a)n = xn − a mod n.

• If n is not prime and is not a power of a prime, then for any a s.t. gcd(a, n) = 1 and
any prime factor p of n, (x− a)n 6= xn − a mod p.

First, show that if n is prime, then the Agrawal-Biswas primality test will always return
prime.

Now, we will prove that if n is composite, the probability over random choices of r(x) that
the algorithm successfully finds a witness to the compositeness of n (and hence returns com-
posite) is at least 1

4d .

(a) Using the polynomial version of Fermat’s Little Theorem, and the fact that, for prime q,
every polynomial over Zq that has leading coefficient 1 (i.e. that is “monic”) has a unique
factorization into irreducible monic polynomials, prove that the number of irreducible
degree d factors that the polynomial (x + 1)n − (xn + 1) has over Zp is at most n/d,
where p is any prime factor of n. (A polynomial is irreducible if it cannot be factored,
for example x2 + 1 = (x + 1)(x + 1) mod 2 is not irreducible over Z2, but x2 + 1 is
irreducible over Z3.)

[HINT: Even though this question sounds complicated, the proof is just one line... ]
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(b) Let f(d, p) denote the number of irreducible monic degree d polynomials over Zp. Prove
that if n is composite, and not a power of a prime, the probability that r(x) is a witness

to the compositeness of n is at least f(d,p)−n/d
pd

, where p is a prime factor of n.

[HINT: pd is the total number of monic degree d polynomials over Zp. ]

(c) Now complete the proof, and prove that the algorithm succeeds with probability at least
1/(4d), leveraging the fact that the number of irreducible monic polynomials of degree
d over Zp is at least pd/d − pd/2. (You should be able to prove a much better bound,
though 1/4d is fine.)

[HINT: You will also need to leverage the fact that we chose d > log n and also explicitly
made sure that n has no prime factors less than 17. ]
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