
Problem Set 5 CS265, Autumn 2022
Due: Friday 11/4 at 11:59 pm on Gradescope

Please follow the homework policies on the course website.

1. (14 pt.) [Another way to sketch sparse vectors.] Suppose that A is an list of length n,
containing elements from a large universe U . Our goal is to estimate the frequencies of each
element in U : that is, for x ∈ U , how often does x appear in A?

The catch is that A is too big to look at all at once. Instead, we see the elements of A one at
a time: A[0], A[1], A[2], . . .. Unfortunately, U is also really big, so we can’t just keep a count
of how often we see each element.

In this problem, we’ll see a construction of a randomized data structure that will keep a
“sketch” of the list A, use small space, and will be able to efficiently answer queries of the
form “approximately how often did x occur in A”?

Specifically, our goal is the following: we would like a (small-space) data structure, which
supports operations update(x) and count(x). The update function inserts an item x ∈ U
into the data structure. The count function should have the following guarantee, for some
δ, ϵ > 0. After calling update n times, count(x) should satisfy

Cx ≤ count(x) ≤ Cx + ϵn (1)

with probability at least 1− δ, where Cx is the true count of x in A.

(a) (3 pt.) Your friend suggests the following strategy (this will not be our final strategy).
We start with an array R of length b initialized to 0, and a random hash function
h : U → {0, 1, . . . , b − 1}. You can assume that h is drawn from some universal hash
family, i.e P (h(x) = h(y)) = 1/b for any x ̸= y. Then the operations are:

• update(x): Increment R[h(x)] by 1.

• count(x): return R[h(x)].

For every entry A[i] in the list it encounters, the scheme calls update(A[i]).

After sequentially processing all n items in the list, what is the expected value of
count(x)?

(b) (2 pt.) Show that there is a choice of b that is O(1/ϵ) so that, for any fixed x ∈ U , we
have

Pr[count(x) < Cx] = 0

and

Pr[count(x) ≥ Cx + ϵn] ≤ 1

e
.

[HINT: The first of the requirements is true no matter what b is.]

(c) (2 pt.) Explain how you would use T copies of the construction in part (a) to define
a data structure that, for any fixed x ∈ U , satisfies (1) with high probability. How big
do you need to take T so that the (1) is satisfied with probability at least 1 − δ? How
much space does your modified construction use? (It should be sublinear in |U| and n).
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Give a complete description and analysis of the data structure, and explain how much
space it uses. You may assume that it takes O(log |U|) bits to store the hash function h
and O(log n) to store each element in the array R.

(d) Explain how to use your algorithm to solve the following problem:

i. (4 pt.) Given a k-sparse vector a ∈ ZN
≥0 (Z≥0 is the set of non-negative integers),

design a randomized matrix Φ ∈ Rm×N for m = O(k logN
ϵ ) so that the following

happens. With probability at least 0.99 over the choice of Φ, you can recover ã
given Φa, so that simultaneously for all i ∈ 1, ..., N , we have

|ã[i]− a[i]| ≤ ϵ∥a∥1
2k

.

[HINT: Think of the k-sparse vector a as being the histogram of the items in the
list A from the previous parts.]
[HINT: How can you represent a hash function as a matrix multiplication?]
[HINT: Note that we want a tighter bound, and we want the bound to hold simul-
taneously for all i. How can we change b and T to achieve this?]

ii. (3 pt.) Now, assuming the above holds for all i, use the k-sparseness of a to
construct â from ã such that

∥â− a∥1 ≤ ϵ∥a∥1.

iii. (0 pt.) [This question is zero points, but worth thinking about.] How
does the guarantee in the previous part compare to the RIP matrices (and the
compressed sensing guarantee that we can get from them, Theorem 1 in the Lecture
9 lecture notes) that we saw in class? (i.e., is this guarantee weaker? Stronger?
Incomparable? The same?)

2. (6 pt.)[Aquarium apportionment.]

Suppose that there is a population of n fish, belonging to one of two types: (Algae eaters
and Barbs). There are also a bunch of fish tanks that these fish could live in. These fish are
somewhat picky: each one has a list of at least 1 + log2(n) fish tanks that it would be happy
in (e.g., the algae eater Algernon likes the tank with the mini pirate ship, or the tank with
the colorful rocks, but he is not into the tank with the fake ferns). The fishes’ lists may be
different, and may overlap.

Unfortunately, these two types of fish don’t get along well: when an algae eater and a barb
are put in the same tank as each other, they will become agitated and fight and stress each
other (and you) out.

Use the probabilistic method to show that it is possible to put all of the fish into fish tanks in
such a way that each fish is happy with their tank, and none of them fight with each other.
That is, define a probability distribution for putting fish into tanks so that, with positive
probability, everyone is happy and there is no fighting.

[HINT: If you put each fish in a random tank that they like, the resulting scheme does not
seem to work...you’ll have to come up with a more interesting random distribution.]
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3. (0 pt.)[Who needs geometry?]

This question is worth zero points, but it is an entertainingly obnoxious use of
the probabilistic method that you will probably find satisfying.

Suppose that your friend has – perhaps adversarially – drawn 10 points on the surface of a
flat table, which you can think of as an infinite plane. Your friend gives you 10 quarters,
which you can think of as discs, all of the same size.

Your challenge is to place the quarters on the table such that no quarters overlap, and every
one of your friend’s chosen points is covered. Show that this is always possible, regardless of
the locations of the points.

One hint is below. Some more hints appear on the next page, so that you can avoid spoilers
if you wish.

[HINT: We’ll save you some time – trying to think about / classify the possible arrangements
of points is not helpful, at least for the purpose of this problem in the context of this course
on randomized algorithms. The solution we have in mind behaves the same way regardless of
the locations of the points.]
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[HINT: Imagine an arbitrarily large planar sheet of quarters, pressed together as tightly as
possible. Such a sheet covers about 90.69% of the plane. See https: // en. wikipedia. org/

wiki/ Circle_ packing for details.]

[HINT: The fact that there are 10 points is important, although the significance may not be
clear until you start down the right solution path...]
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