Due: December 2 (Friday) at 11:59PM (Pacific Time)

Please follow the homework policies on the course website.

1. (9 pt.) Fundamental Theorem of Markov Chains: A Special Case

Let X_0, X_1, \ldots be a Markov chain over n states (labeled $1, 2, \ldots, n$) with transition matrix $P \in \mathbb{R}^{n \times n}$, i.e., for any $t \ge 0$, $\Pr[X_{t+1} = j | X_t = i] = P_{ij}$. In addition, we assume that $P_{ij} > 0$ for all $i, j \in [n]$, and define $p_{\min} := \min_{i,j \in [n]} P_{ij} > 0$. In this problem, we will prove part of the fundamental theorem of Markov chains for this special case. In particular, we will show that there exists a unique stationary distribution π such that for all $i, j \in [n]$,

$$\lim_{t \to +\infty} \Pr[X_t = j | X_0 = i] = \pi_j.$$

- (a) (2 pt.) As a warmup, show that the assumption $P_{ij} > 0$ for all $i, j \in [n]$ implies that the Markov chain is irreducible and aperiodic. Thus, the assumption that we made is not weaker than the one in the original theorem.
- (b) (2 pt.) Let a = [a₁ a₂ ··· a_n] be a row vector that satisfies ∑_{i=1}ⁿ a_i = 0. Prove that ||aP||₁ ≤ (1 − np_{min}/2)||a||₁.
 [HINT: You can use the following fact: For vectors a, b ∈ ℝⁿ satisfy ∑_{i=1}ⁿ a_i = 0 and min_{i∈[n]} b_i ≥ ε > 0, |∑_{i=1}ⁿ a_ib_i| ≤ ∑_{i=1}ⁿ |a_i|b_i − ε/2 ∑_{i=1}ⁿ |a_i|.]
- (c) (3 pt.) Prove that there exists an n-dimensional row vector π = [π₁ π₂ ··· π_n] such that: (1) π = πP; (2) ∑_{i=1}ⁿ π_i = 1.
 [HINT: First prove the existence of a non-zero vector π satisfying π = πP, and then show that the second condition can be satisfied by scaling π. For the first step, you may use the following fact without proof: if λ is an eigenvalue of a square matrix A, λ is also an eigenvalue of A^T. Part 1b might be helpful for the second step.]
- (d) (2 pt.) Let $v = \begin{bmatrix} v_1 & v_2 & \cdots & v_n \end{bmatrix}$ be a row vector that satisfies $\sum_{i=1}^n v_i = 1$. Let π be a vector chosen as in Part 1c. Prove that $\lim_{t \to +\infty} vP^t = \pi$. Then, derive that for all $i, j \in [n]$,

$$\lim_{t \to +\infty} \Pr[X_t = j | X_0 = i] = \pi_j.$$

[**HINT:** Apply Part 1b to $(v - \pi), (v - \pi)P, (v - \pi)P^2, \dots$]

- (e) (0 pt.) [Optional: this won't be graded.] Extend the proof to the general case, where the Markov chain is irreducible and aperiodic but $P_{ij} > 0$ might not hold.
- 2. (11 pt.) Let n > 2, and consider the Markov chain $\{X_t\}$ defined on the states $\{0, 1, \ldots, n\}$ consisting of a random walk with reflecting barriers at 0 and n:

That is, $\{X_t\}$ is defined by the following transition probabilities:

• For $i \in \{1, ..., n-1\}$, we have

$$\Pr[X_t = i + 1 | X_{t-1} = i] = \Pr[X_t = i - 1 | X_{t-1} = i] = \frac{1}{2}.$$

• At 0 and n, we have reflecting barriers:

$$\Pr[X_t = 1 | X_{t-1} = 0] = \Pr[X_t = n - 1 | X_{t-1} = n] = 1.$$

- (a) (2 pt.) Is this chain periodic or aperiodic? Is it irreducible? Justify your answers in one sentence each.
- (b) (5 pt.) Consider the "lazy" version of $\{X_t\}$ that, at every timestep, flips a fair coin and with probability 1/2 stays in its current state, and with probability 1/2 transitions as prescribed above. Call this lazy version $\{\tilde{X}_t\}$. Define a coupling for \tilde{X}_t that ensures that the two chains in your coupling "never cross without meeting." That is, if you are coupling $\{\tilde{X}_t\}$ and $\{\tilde{Y}_t\}$, you should ensure that if $\tilde{X}_0 \leq \tilde{Y}_0$, then it will hold that $\tilde{X}_t \leq \tilde{Y}_t$ for all t.
- (c) (4 pt.) Show that $\{\tilde{X}_t\}$ has a unique stationary distribution, and that the mixing time of $\{\tilde{X}_t\}$ is bounded by $O(n^2)$.

[HINT: To bound the mixing time, use the coupling you defined in part (b).]

[HINT: Recall Lemma 6 from Class 13, which says that if Z_t is walk on $\{0, 1, 2, ...\}$ with a reflecting barrier at 0 (so $\Pr[Z_t = 1 | Z_{t-1} = 0] = 1$, and otherwise $Z_t = Z_{t-1} \pm 1$ with probability 1/2 each), then the expected amount of time before $Z_t = n$, given that $Z_0 \leq n$, is at most n^2 .]