Due: December 2 (Friday) at 11:59PM (Pacific Time)

Please follow the homework policies on the course website.

1. (9 pt.) Fundamental Theorem of Markov Chains: A Special Case

Let X_0, X_1, \ldots be a Markov chain over n states (labeled $1, 2, \ldots, n$) with transition matrix $P \in \mathbb{R}^{n \times n}$, i.e., for any $t \geq 0$, $Pr[X_{t+1} = j | X_t = i] = P_{ij}$. In addition, we assume that $P_{ij} > 0$ for all $i, j \in [n]$, and define $p_{\min} := \min_{i,j \in [n]} P_{ij} > 0$. In this problem, we will prove part of the fundamental theorem of Markov chains for this special case. In particular, we will show that there exists a unique stationary distribution π such that for all $i, j \in [n]$,

$$
\lim_{t \to +\infty} \Pr[X_t = j | X_0 = i] = \pi_j.
$$

- (a) (2 pt.) As a warmup, show that the assumption $P_{ij} > 0$ for all $i, j \in [n]$ implies that the Markov chain is irreducible and aperiodic. Thus, the assumption that we made is not weaker than the one in the original theorem.
- (b) (2 pt.) Let $a = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix}$ be a row vector that satisfies $\sum_{i=1}^n a_i = 0$. Prove that $||aP||_1 \leq (1 - np_{\min}/2)||a||_1$. [HINT: You can use the following fact: For vectors $a, b \in \mathbb{R}^n$ satisfy $\sum_{i=1}^n a_i = 0$ and $\min_{i \in [n]} b_i \geq \epsilon > 0, \, |\sum_{i=1}^n a_i b_i| \leq \sum_{i=1}^n |a_i| b_i - \frac{\epsilon}{2}$ $\frac{\epsilon}{2} \sum_{i=1}^{n} |a_i|$.
- (c) (3 pt.) Prove that there exists an *n*-dimensional row vector $\pi = \begin{bmatrix} \pi_1 & \pi_2 & \cdots & \pi_n \end{bmatrix}$ such that: (1) $\pi = \pi P$; (2) $\sum_{i=1}^{n} \pi_i = 1$. **[HINT:** First prove the existence of a non-zero vector π satisfying $\pi = \pi P$, and then show that the second condition can be satisfied by scaling π . For the first step, you may use the following fact without proof: if λ is an eigenvalue of a square matrix A, λ is also an eigenvalue of A^T . Part 1b might be helpful for the second step. |
- (d) (2 pt.) Let $v = \begin{bmatrix} v_1 & v_2 & \cdots & v_n \end{bmatrix}$ be a row vector that satisfies $\sum_{i=1}^n v_i = 1$. Let π be a vector chosen as in Part 1c. Prove that $\lim_{t\to+\infty} vP^t = \pi$. Then, derive that for all $i, j \in [n],$

$$
\lim_{t \to +\infty} \Pr[X_t = j | X_0 = i] = \pi_j.
$$

[HINT: Apply Part 1b to $(v - \pi)$, $(v - \pi)P$, $(v - \pi)P^2$,

- (e) (0 pt.) [Optional: this won't be graded.] Extend the proof to the general case, where the Markov chain is irreducible and aperiodic but $P_{ij} > 0$ might not hold.
- 2. (11 pt.) Let $n > 2$, and consider the Markov chain $\{X_t\}$ defined on the states $\{0, 1, \ldots, n\}$ consisting of a random walk with reflecting barriers at 0 and n .

0 1 2 3 4 n − 2 n − 1 n 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1 1 1/2 · · ·

That is, $\{X_t\}$ is defined by the following transition probabilities:

• For $i \in \{1, ..., n-1\}$, we have

$$
\Pr[X_t = i + 1 | X_{t-1} = i] = \Pr[X_t = i - 1 | X_{t-1} = i] = \frac{1}{2}.
$$

• At 0 and n , we have reflecting barriers:

$$
Pr[X_t = 1 | X_{t-1} = 0] = Pr[X_t = n - 1 | X_{t-1} = n] = 1.
$$

- (a) (2 pt.) Is this chain periodic or aperiodic? Is it irreducible? Justify your answers in one sentence each.
- (b) (5 pt.) Consider the "lazy" version of $\{X_t\}$ that, at every timestep, flips a fair coin and with probability $1/2$ stays in its current state, and with probability $1/2$ transitions as prescribed above. Call this lazy version $\{\tilde{X}_t\}$. Define a coupling for \tilde{X}_t that ensures that the two chains in your coupling "never cross without meeting." That is, if you are coupling $\{\tilde{X}_t\}$ and $\{\tilde{Y}_t\}$, you should ensure that if $\tilde{X}_0 \leq \tilde{Y}_0$, then it will hold that $\tilde{X}_t \leq \tilde{Y}_t$ for all t.
- (c) (4 pt.) Show that $\{\tilde{X}_t\}$ has a unique stationary distribution, and that the mixing time of $\{\tilde{X}_t\}$ is bounded by $O(n^2)$.

[HINT: To bound the mixing time, use the coupling you defined in part (b) .]

[HINT: Recall Lemma 6 from Class 13, which says that if Z_t is walk on $\{0, 1, 2, \ldots\}$ with a reflecting barrier at 0 (so $Pr[Z_t = 1 | Z_{t-1} = 0] = 1$, and otherwise $Z_t = Z_{t-1} \pm 1$ with probability $1/2$ each), then the expected amount of time before $Z_t = n$, given that $Z_0 \leq n$, is at most n^2 .