
Problem Set 7 CS265, Autumn 2022-2023
Due: December 2 (Friday) at 11:59PM (Pacific Time)

Please follow the homework policies on the course website.

1. (9 pt.) Fundamental Theorem of Markov Chains: A Special Case

Let X0, X1, . . . be a Markov chain over n states (labeled 1, 2, . . . , n) with transition matrix
P ∈ Rn×n, i.e., for any t ≥ 0, Pr[Xt+1 = j|Xt = i] = Pij . In addition, we assume that Pij > 0
for all i, j ∈ [n], and define pmin := mini,j∈[n] Pij > 0. In this problem, we will prove part of
the fundamental theorem of Markov chains for this special case. In particular, we will show
that there exists a unique stationary distribution π such that for all i, j ∈ [n],

lim
t→+∞

Pr[Xt = j|X0 = i] = πj .

(a) (2 pt.) As a warmup, show that the assumption Pij > 0 for all i, j ∈ [n] implies that
the Markov chain is irreducible and aperiodic. Thus, the assumption that we made is
not weaker than the one in the original theorem.

(b) (2 pt.) Let a =
[
a1 a2 · · · an

]
be a row vector that satisfies

∑n
i=1 ai = 0. Prove

that ∥aP∥1 ≤ (1− npmin/2)∥a∥1.
[HINT: You can use the following fact: For vectors a, b ∈ Rn satisfy

∑n
i=1 ai = 0 and

mini∈[n] bi ≥ ϵ > 0, |
∑n

i=1 aibi| ≤
∑n

i=1 |ai|bi −
ϵ
2

∑n
i=1 |ai|. ]

(c) (3 pt.) Prove that there exists an n-dimensional row vector π =
[
π1 π2 · · · πn

]
such that: (1) π = πP ; (2)

∑n
i=1 πi = 1.

[HINT: First prove the existence of a non-zero vector π satisfying π = πP , and then
show that the second condition can be satisfied by scaling π. For the first step, you may
use the following fact without proof: if λ is an eigenvalue of a square matrix A, λ is also
an eigenvalue of AT . Part 1b might be helpful for the second step. ]

(d) (2 pt.) Let v =
[
v1 v2 · · · vn

]
be a row vector that satisfies

∑n
i=1 vi = 1. Let π be

a vector chosen as in Part 1c. Prove that limt→+∞ vP t = π. Then, derive that for all
i, j ∈ [n],

lim
t→+∞

Pr[Xt = j|X0 = i] = πj .

[HINT: Apply Part 1b to (v − π), (v − π)P, (v − π)P 2, . . .. ]

(e) (0 pt.) [Optional: this won’t be graded.] Extend the proof to the general case,
where the Markov chain is irreducible and aperiodic but Pij > 0 might not hold.

2. (11 pt.) Let n > 2, and consider the Markov chain {Xt} defined on the states {0, 1, . . . , n}
consisting of a random walk with reflecting barriers at 0 and n:
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That is, {Xt} is defined by the following transition probabilities:

• For i ∈ {1, . . . , n− 1}, we have

Pr[Xt = i+ 1|Xt−1 = i] = Pr[Xt = i− 1|Xt−1 = i] =
1

2
.

• At 0 and n, we have reflecting barriers:

Pr[Xt = 1|Xt−1 = 0] = Pr[Xt = n− 1|Xt−1 = n] = 1.

(a) (2 pt.) Is this chain periodic or aperiodic? Is it irreducible? Justify your answers in
one sentence each.

(b) (5 pt.) Consider the “lazy” version of {Xt} that, at every timestep, flips a fair coin
and with probability 1/2 stays in its current state, and with probability 1/2 transitions
as prescribed above. Call this lazy version {X̃t}. Define a coupling for X̃t that ensures
that the two chains in your coupling “never cross without meeting.” That is, if you
are coupling {X̃t} and {Ỹt}, you should ensure that if X̃0 ≤ Ỹ0, then it will hold that
X̃t ≤ Ỹt for all t.

(c) (4 pt.) Show that {X̃t} has a unique stationary distribution, and that the mixing time
of {X̃t} is bounded by O(n2).

[HINT: To bound the mixing time, use the coupling you defined in part (b). ]

[HINT: Recall Lemma 6 from Class 13, which says that if Zt is walk on {0, 1, 2, . . .}
with a reflecting barrier at 0 (so Pr[Zt = 1|Zt−1 = 0] = 1, and otherwise Zt = Zt−1 ± 1
with probability 1/2 each), then the expected amount of time before Zt = n, given that
Z0 ≤ n, is at most n2. ]
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