
Class 10
Derandomization Techniques

Solutions to Warm-up 1

Let G - CV ,E) bea graph .

• Choose a random SEV

• IE [#edgesthat cross Is,51] = §⇐P{" '}?Iss
es) = IET
÷

⇒ I cut so that

#edges(crossing out) 3 HI

Let G - CV ,E) bea graph .

• Choose a random SEV

• IE [#edgesthat cross Is,51] = §⇐P{" '}?Iss
es) = IET
÷

⇒ I cut so that

#edges(crossing out) 3 HI

Let G - CV ,E) bea graph .

• Choose a random SEV

• IE [#edgesthat cross Is,51] = §⇐P{" '}?Iss
es) = IET
÷

⇒ I cut so that

#edges(crossing out) 3 HI

Let G - CV ,E) bea graph .

• Choose a random SEV

• IE [#edgesthat cross Is,51] = §⇐P{" '}?Iss
es) = IET
÷

⇒ I cut so that

#edges(crossing out) 3 HI

Let G - CV ,E) bea graph .

• Choose a random SEV

• IE [#edgesthat cross Is,51] = §⇐P{" '}?Iss
es) = IET
÷

⇒ I cut so that

#edges(crossing out) 3 HI

Let G - CV ,E) bea graph .

• Choose a random SEV

• IE [#edgesthat cross Is,51] = §⇐P{" '}?Iss
es) = IET
÷

⇒ I cut so that

#edges(crossing out) 3 HI

Let G - CV ,E) bea graph .

• Choose a random SEV

• IE [#edgesthat cross Is,51] = §⇐P{" '}?Iss
es) = IET
÷

⇒ I cut so that

#edges(crossing out) 3 HI

Let G - CV ,E) bea graph .

• Choose a random SEV

• IE [#edgesthat cross Is,51] = §⇐P{" '}?Iss
es) = IET
÷

⇒ I cut so that

#edges(crossing out) 3 HI

Solutions to Warm-up 2

Let y be a 3-
CNF formula .

Choose a random assignment o

Ef#satisfied uses] -- E. c. Plan -TRUE] - E fuses)
-

⇒ To sit . 410) has e.g. , P{ x.VXZVXI -TRUE}
- Hoo

>Foo of the clauses sincethere's only one out of eight

satisfied. assignments so that it is false .

Let y be a 3-
CNF formula .

Choose a random assignment o

Ef#satisfied uses] -- E. c. Plan -TRUE] - E fuses)
-

⇒ To sit . 410) has e.g. , P{ x.VXZVXI -TRUE}
- Hoo

>Foo of the clauses sincethere's only one out of eight

satisfied. assignments so that it is false .

Let y be a 3-
CNF formula .

Choose a random assignment o

Ef#satisfied uses] -- E. c. Plan -TRUE] - E fuses)
-

⇒ To sit . 410) has e.g. , P{ x.VXZVXI -TRUE}
- Hoo

>Foo of the clauses sincethere's only one out of eight

satisfied. assignments so that it is false .

Let y be a 3-
CNF formula .

Choose a random assignment o

Ef#satisfied uses] -- E. c. Plan -TRUE] - E fuses)
-

⇒ To sit . 410) has e.g. , P{ x.VXZVXI -TRUE}
- Hoo

>Foo of the clauses sincethere's only one out of eight

satisfied. assignments so that it is false .

Let y be a 3-
CNF formula .

Choose a random assignment o

Ef#satisfied uses] -- E. c. Plan -TRUE] - E fuses)
-

⇒ To sit . 410) has e.g. , P{ x.VXZVXI -TRUE}
- Hoo

>Foo of the clauses sincethere's only one out of eight

satisfied. assignments so that it is false .

Let y be a 3-
CNF formula .

Choose a random assignment o

Ef#satisfied uses] -- E. c. Plan -TRUE] - E fuses)
-

⇒ To sit . 410) has e.g. , P{ x.VXZVXI -TRUE}
- Hoo

>Foo of the clauses sincethere's only one out of eight

satisfied. assignments so that it is false .

Let y be a 3-
CNF formula .

Choose a random assignment o

Ef#satisfied uses] -- E. c. Plan -TRUE] - E fuses)
-

⇒ To sit . 410) has e.g. , P{ x.VXZVXI -TRUE}
- Hoo

>Foo of the clauses sincethere's only one out of eight

satisfied. assignments so that it is false .

Let y be a 3-
CNF formula .

Choose a random assignment o

Ef#satisfied uses] -- E. c. Plan -TRUE] - E fuses)
-

⇒ To sit . 410) has e.g. , P{ x.VXZVXI -TRUE}
- Hoo

>Foo of the clauses sincethere's only one out of eight

satisfied. assignments so that it is false .

Let y be a 3-
CNF formula .

Choose a random assignment o

Ef#satisfied uses] -- E. c. Plan -TRUE] - E fuses)
-

⇒ To sit . 410) has e.g. , P{ x.VXZVXI -TRUE}
- Hoo

>Foo of the clauses sincethere's only one out of eight

satisfied. assignments so that it is false .

Questions about the minilectures/quiz?

Group Work!

• In those warm-ups (and in the minilectures) you saw ways to prove
that something nice exists…but not how to find those nice things
efficiently.

• Sometimes, it’s possible to turn a probabilistic proof into a
deterministic algorithm!

• Today, we’ll see one technique called “Derandomization via
conditional expectation.”

Group Work
Problem 1

• 𝐄 𝑋 𝑣! ∈ 𝑆] = 𝐄[𝑋 𝑣! ∈ 𝑆 by symmetry.

• !
"
𝐄 𝑋 𝑣! ∈ 𝑆 + !

"
𝐄 𝑋 𝑣! ∈ 𝑆 = 𝐄 𝑋 = #

"

• So both must be equal to #
"

Group Work
Problem 2

Let X be the #edges crossing (
S
,5)

⇒ SEKI :: I

= 's . Elly :!! sues] t 's - Elly :! vets))
T T

Oneofthese must be 3 IE 112

Let X be the #edges crossing (
S
,5)

⇒ SEKI :: I

= 's . Elly :!! sues] t 's - Elly :! vets))
T T

Oneofthese must be 3 IE 112

Let X be the #edges crossing (
S
,5)

⇒ SEKI :: I

= 's . Elly :!! sues] t 's - Elly :! vets))
T T

Oneofthese must be 3 IE 112

Let X be the #edges crossing (
S
,5)

⇒ SEKI :: I

= 's . Elly :!! sues] t 's - Elly :! vets))
T T

Oneofthese must be 3 IE 112

Group Work
Problem 3

Let X be the #edges crossing (
S
,5)

⇒ SEKI :: I

= 's . Elly :!! sues] t 's - Elly :! vets))
T T

Oneofthese must be 3 IE 112

So we just want to see which is the case . . .

ElXII:::!: . n.es I - Efx KY?:÷ .
. reels]

⇐
Pl""c's's'" Ichi: 't. . u.es}

- plants
.

so thin. . vi. * s)

Consider:

So we just want to see which of those is the case…

• If this is positive, then we should put 𝑣! ∈ 𝑆.
• Otherwise, put 𝑣! ∈ 𝑆

So we just want to see which is the case . . .

ElXII:::!: . n.es I - Efx KY?:÷ .
. reels]

⇐
Pl""c's's'" Ichi: 't. . u.es}

- plants
.

so thin. . vi. * s)

So we just want to see which is the case . . .

ElXII:::!: . n.es I - Efx KY?:÷ .
. reels]

⇐
Pl""c's's'" Ichi: 't. . u.es}

- plants
.

so thin. . vi. * s)

So we just want to see which is the case . . .

ElXII:::!: . n.es I - Efx KY?:÷ .
. reels]

⇐
Pl""c's's'" Ichi: 't. . u.es}

- plants
.

so thin. . vi. * s)
• If {u ,r} doesn't include ve , this is O

• If { u , v } = { Vi , Vt) for ist , this is
'

z
- I --O

• If {UN } = { vi. vid for it this is {
t 't is

-1 ie S

• If {u ,r} doesn't include ve , this is O

• If { u , v } = { Vi , Vt) for ist , this is
'

z
- I --O

• If {UN } = { vi. vid for it this is {
t 't is

-1 ie S

• If {u ,r} doesn't include ve , this is O

• If { u , v } = { Vi , Vt) for ist , this is
'

z
- I --O

• If {UN } = { vi. vid for it this is {
t 't is

-1 ie S

𝑣

𝑣

- l't' s) - l sits)

If this is positive, LE fX K!!?!; , Vee S] is

bigger and we should add Vt to S
.

Otherwise we should add ve to 5 .

𝑣$ 𝑣$

Group Work
Problem 3

Let X be the #edges crossing (
S
,5)

⇒ SEKI :: I

= 's . Elly :!! sues] t 's - Elly :! vets))
T T

Oneofthese must be 3 IE 112
So we just want to see which is the case . . .

ElXII:::!: . n.es I - Efx KY?:÷ .
. reels]

⇐
Pl""c's's'" Ichi: 't. . u.es}

- plants
.

so thin. . vi. * s)

Consider:

So we just want to see which of those is the case…

• If this is positive, then we should put 𝑣! ∈ 𝑆.
• Otherwise, put 𝑣! ∈ 𝑆

Aka, there are more edges from
𝑣! to 𝑆 than there are to 𝑆 among
the choices we’ve already made.

- l't' s) - l sits)

If this is positive, LE fX K!!?!; , Vee S] is

bigger and we should add Vt to S
.

Otherwise we should add ve to 5 .

𝑣$ 𝑣$

Group Work
Problem 4 ALGORITHM
-

5=0
-1=01 4This will become 5

for t - I
, 2,3,n://I.ir?:dm::::mtosinant :

add Vt to S

Returns

It's the greedy algorithm !

General Paradigm
Derandomization via conditional expectation

• Suppose you know that 𝐄[something] is good

• Suppose you can build [something] one choice at a time

• Then assuming that
𝐄 something choices 1,2 … , 𝑡 − 1] is good,

there is a way to make tth choice so that
𝐄[something | choices 1,2 … , 𝑡] is good.

• If you can find that way to make the tth choice efficiently, you have an
algorithm!

Let’s try another example!
(More groupwork)

Solutions to Group Work

Choose values (TRUE / FALSE) for Xi , Xz, Xz , . . - , Xn oneat atime .

At each step, make sure that

left:is:S Iii::iii. f. ¥
The choice exists by induction :

• base case = warmup exercise

• 7¥ ⇐ El auatesliiiiisiiiif

Choose values (TRUE / FALSE) for Xi , Xz, Xz , . . - , Xn oneat atime .

At each step, make sure that

left:is:S Iii::iii. f. ¥
The choice exists by induction :

• base case = warmup exercise

• 7¥ ⇐ El auatesliiiiisiiiif

Choose values (TRUE / FALSE) for Xi , Xz, Xz , . . - , Xn oneat atime .

At each step, make sure that

left:is:S Iii::iii. f. ¥
The choice exists by induction :

• base case = warmup exercise

• 7¥ ⇐ El auatesliiiiisiiiif

Choose values (TRUE / FALSE) for Xi , Xz, Xz , . . - , Xn oneat atime .

At each step, make sure that

left:is:S Iii::iii. f. ¥
The choice exists by induction :

• base case = warmup exercise

• 7¥ ⇐ El auatesliiiiisiiiif
= 's Efta:its lxiii:iii. xe.irueltzeftiaateshii.si. . a. fast

n

y\
one of these is 37M18

leftists 1×99.7×7: . x.TRUE] -- E. EPIC -trutta" 7¥
.
.
x.true)
-

This is 1 if the choices have already made C true .

Otherwise it's 1- 112k
,
where he { O , I , 2,33 is the

of free variables left in C .

= 's Efta:its lxiii:iii. xe.irueltzeftiaateshii.si. . a. fast
n

y\
one of these is 37M18

leftists 1×99.7×7: . x.TRUE] -- E. EPIC -trutta" 7¥
.
.
x.true)
-

This is 1 if the choices have already made C true .

Otherwise it's 1- 112k
,
where he { O , I , 2,33 is the

of free variables left in C .

How to make the choice efficiently?

= 's Efta:its lxiii:iii. xe.irueltzeftiaateshii.si. . a. fast
n

y\
one of these is 37M18

leftists 1×99.7×7: . x.TRUE] -- E. EPIC -trutta" 7¥
.
.
x.true)
-

This is 1 if the choices have already made C true .

Otherwise it's 1- 112k
,
where he { O , I , 2,33 is the

of free variables left in C .

= 's Efta:its lxiii:iii. xe.irueltzeftiaateshii.si. . a. fast
n

y\
one of these is 37M18

leftists 1×99.7×7: . x.TRUE] -- E. EPIC -trutta" 7¥
.
.
x.true)
-

This is 1 if the choices have already made C true .

Otherwise it's 1- 112k
,
where he { O , I , 2,33 is the

of free variables left in C .

= 's Efta:its lxiii:iii. xe.irueltzeftiaateshii.si. . a. fast
n

y\
one of these is 37M18

leftists 1×99.7×7: . x.TRUE] -- E. EPIC -trutta" 7¥
.
.
x.true)
-

This is 1 if the choices have already made C true .

Otherwise it's 1- 112k
,
where he { O , I , 2,33 is the

of free variables left in C .

= 's Efta:its lxiii:iii. xe.irueltzeftiaateshii.si. . a. fast
n

y\
one of these is 37M18

leftists 1×99.7×7: . x.TRUE] -- E. EPIC -trutta" 7¥
.
.
x.true)
-

This is 1 if the choices have already made C true .

Otherwise it's 1- 112k
,
where he { O , I , 2,33 is the

of free variables left in C .

= 's Efta:its lxiii:iii. xe.irueltzeftiaateshii.si. . a. fast
n

y\
one of these is 37M18

leftists 1×99.7×7: . x.TRUE] -- E. EPIC -trutta" 7¥
.
.
x.true)
-

This is 1 if the choices have already made C true .

Otherwise it's 1- 112k
,
where he { O , I , 2,33 is the

of free variables left in C .

In particular, we can computethis efficiently .

ALGORITHM :

for t - I
,

. . .

, n :

compute Effigies II!"! !!. . . a-TRUE]
If it is at least 7h18

,
set Xt - TRUE

Otherwise, set XL. = FALSE

Want to know when this is larger than "#
$

Time 𝑂(𝑚) !

Algorithm
In particular, we can computethis efficiently .

ALGORITHM :

for t - I
,

. . .

, n :

compute Effigies II!"! !!. . . a-TRUE]
If it is at least 7h18

,
set Xt - TRUE

Otherwise, set XL. = FALSE

Time 𝑂(𝑚)

Time 𝑂(𝑛𝑚) total!

