
CS265, Fall 2022

Class 10: Agenda and Questions

1 Announcements

• HW4 due tomorrow!

• HW5 out now!

• Mary isn’t here today! (Back next week). Pras is in charge.

2 Warm-Up

Group Work

1. Show that, in any undirected, unweighted graph G = (V,E) with no self-loops,
there is a cut with at least |E|/2 edges that cross it. (Recall that a cut in G is just
a partition of the vertices V = S ∪ S̄, and that an edge {u, v} crosses the cut if
u ∈ S and v ∈ S̄ or the other way around).

2. Let ϕ be a 3-CNF formula. That is, ϕ is the AND of a bunch of clauses that look
like (x∨ y ∨ z) (or (x∨ ȳ ∨ z̄), or ..., where x̄ means “not x”). For example, maybe

ϕ = (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x4 ∨ x5) ∧ · · · ∧ (x23 ∨ x1 ∨ x5).

Suppose that each clause has three distinct literals that appear in it. (e.g., (x1 ∨
x1 ∨ x1) is not allowed).

Given an assignment σ to the variables x1, x2, . . . (eg, x1 = TRUE, x2 = FALSE,
etc), we say that a clause of ϕ is satisfied by σ if that clause evaluates to TRUE.

Show that any 3-CNF formula ϕ has an assignment σ so that at least 7/8 of the
clauses are satisfied.

Group Work: Solutions

1. We choose a random cut. The expected number of edges that cross it is

E[edges that cross] =
∑
e∈E

P[e crosses cut] = |E|/2.

Thus, there exists a cut with at least that many edges that cross it.

1

2. We choose a random assignment.

E[number of clauses satisfied] =
∑
C

P[C is satisfied] = (num clauses) · (7/8)

because there’s only one way out of 8 to fail to satisfy a clause (False OR false
OR false). So there exists an assignment σ that satisfies at least a 7/8 fraction of
clauses.

3 Recap/Questions

Any questions from the minilectures and/or the quiz? (The probabilistic method; Ramsey
numbers; Independent sets)

4 Derandomization via conditional expectation

In class today, we’ll explore a general way to turn an existence proof—like the ones from
your warm-up exercise—into an algorithm. This is called “Derandomization via conditional
expectation.”

Group Work

Our goal in this group work is to find an efficient, deterministic algorithm to find a cut
(S, S̄) so that the number of edges crossing the cut is at least |E|/2. In general, finding
a cut with the maximum number of edges crossing it is NP-hard; but this will at least
find a large-ish cut.

Note: There is a straightforward deterministic greedy algorithm to do this. Here, we’ll
see a way to derive a deterministic algorithm using conditional expectations.

1. Let G = (V,E) be as in warm-up question 1. Suppose the vertices are ordered
V = {v1, v2, . . . , vn}.
Suppose that S ⊆ V is chosen uniformly at random (that is, each vi is included in
S indepedently with probability 1/2). Let X be the number of edges crossing the
cut (S, S̄).

Convince yourself that E[X|v1 ∈ S] = |E|/2.

2. Suppose that you have made some choices for v1, v2, . . . , vt−1 (eg, v1 ∈ S, v2 6∈
S, v3 ∈ S, . . . , vt−1 ∈ S), so that

E[X| choices for v1, . . . , vt−1] ≥ |E|
2
.

2

Show that either

E[X | choices for v1, . . . , vt−1; and vt ∈ S] ≥ |E|
2

or

E[X | choices for v1, . . . , vt−1; and vt 6∈ S] ≥ |E|
2

3. Again, suppose that you have made choices for v1, . . . , vt−1 so that

E[X| choices for v1, . . . , vt−1] ≥ |E|
2
.

Show how to deterministically, efficiently make a choice for vt so that

E[X| choices for v1, . . . , vt−1; and vt] ≥ |E|
2
.

4. Building on your method above, design an algorithm to make a choice for v1, and
then v2, and then v3, and so on, so that eventually you have (efficiently, determin-
istically) found a set S so that at least |E|/2 edges cross the cut (S, S̄).

Group Work: Solutions

1. We have E[X|v1 ∈ S] = E[X|v1 6∈ S] by symmetry. Then

|E|/2 = E[X] =
1

2
E[X|v1 ∈ S] +

1

2
E[X|v1 6∈ S],

so both E[...] on the right hand side must both be equal to |E|/2, since they are
the same.

2. LetA = E[X|choices for v1, . . . , vt−1, vt ∈ S] and letB = E[X|choices for v1, . . . , vt−1, vt 6∈
S]. Then

|E|
2
≥ E[X|choices for v1, . . . , vt−1]

=
1

2
A+

1

2
B,

so at least one of A,B must be ≥ |E|/2.

3. Let’s use the same notation A,B from the previous part. We know that at least
one of A,B is at least |E|/2, so we just want to find which one. Thus, it suffices to

3

find which of A, B is larger, and make the corresponding decision. We can write

A =
∑
e∈E

Pr[ecrosses|v1, . . . , vt−1; vt ∈ S]

and similarly

B =
∑
e∈E

Pr[ecrosses|v1, . . . , vt−1; vt 6∈ S]

Consider

A−B =
∑
e∈E

(Pr[ecrosses|v1, . . . , vt−1; vt ∈ S]− Pr[ecrosses|v1, . . . , vt−1; vt 6∈ S]) .

For each edge e, if neither of e’s endpoints are vt, that term will cancel in this
difference. Similarly, if one of e’s endpoints is vt and the other is some vj for j > t
(e.g., vj hasn’t been placed yet), then that term is 1/2−1/2 = 0 and cancels. Thus,
the only terms that survive are those for e = {vt, vi} for i < t. In that case,

Pr[e crosses|v1, . . . , vt−1; vt ∈ S]− Pr[e crosses|v1, . . . , vt−1; vt 6∈ S]

= 1[vi ∈ S̄]− 1[vi ∈ S].

Thus, the difference can be written

A−B =
∑
i<t

1[{vi, vt} ∈ E](1[vi ∈ S̄]− 1[vi ∈ S])

=
(
nbrs of vt already placed in S̄

)
− (# nbrs of vt already places in S) .

If this is positive, then A is bigger; if it’s negative, then B is bigger. Thus, if vt
has more neighbors already placed in S̄, we should place vt in S; if vt has more
neighbors already placed in S, we should place vt in S̄. This makes sense, and is
actually just the straightforward greedy algorithm! (But by doing it this way, we
get to illustrate the method of derandomization via conditional expectations).

4. • Order the vertices v1, . . . , vn.

• Initialize T, S = ∅
• For t = 1, . . . , n:

– If |Γ(vt) ∩ S| > |Γ(vt) ∩ T |: T ← T ∪ {vt}
– Else S ← S ∪ {vt}

• Return (S, T)

[Solutions and discussion of the general paradigm of derandomization via conditional
expectation; see lecture notes and/or slides]

4

Group Work

1. Let ϕ be a 3-CNF formula with n variables and m clauses, and 3 distinct variables
in each clause. Use the method of derandomization via conditional expectation to
give an efficient (polynomial in n,m) deterministic algorithm to find an assignment
to ϕ so that at least a 7/8-fraction of the clauses are satisfied.

2. (If time) There is also a natural greedy algorithm for this problem:

• For i = 1, 2, . . . , n:

– Assign xi to be whichever value makes the most currently unsatisfied clauses
true (breaking ties arbitrarily).

In the previous example (maximizing the size of a cut), the algorithm we came up
with was secretly the natural greedy algorithm. Is your algorithm from the previous
part the same as this natural greedy algorithm? Is it better or worse?

Group Work: Solutions

1. We apply the method of deranomization by conditional expectation! We choose
values for the variables x1, . . . , xn one at a time, and as before, provided that we
have

E[number of sat clauses|x1, . . . , xt−1] ≥ 7m/8

there is a choice for xt so that

E[number of sat clauses|x1, . . . , xt] ≥ 7m/8.

Thus, all our algorithm has to do is find it. Let X be the number of satisfied clauses.
Then we can write

E[X|x1, . . . , xt] =
∑
C

Pr[C sat.|x1, . . . , xt].

Observe that for each clause C, we can actually compute

Pr[C sat.|x1, . . . , xt]

in time O(1): that’s because there are at most 8 outcomes. Thus, we can compute
the whole thing in time O(m). So our algorithm is:

• For t = 1, . . . , n:

– Compute E[X|x1, . . . , xt−1;xt = T]

– If that is ≥ 7m/8, set xt ← T ; otherwise set xt ← F .

5

• Return (x1, . . . , xn).

The whole thing takes time O(nm).

2. The “natural greedy algorithm” is worse than the algorithm from part (a). To see
this, we can consider an example with n = 8 and m = 8. The algorithm from part
(a) will come up with an assignment that satisfies 7 of the 8 clauses. The clauses
are (xi ∨ x7 ∨ x8) for i = 1, 2, . . . , 6, along with (x1 ∨ x2 ∨ x3)∧ (x4 ∨ x5 ∨ x6). Each
of x1, . . . , x6 appears in exactly two clauses, once as-is and once negated, so the
natural greedy algorithm can take an arbitrary choice for each of these variables.
If we choose to set all of them to True, then each of the last two clauses will be
unsatisfied, so the greedy algorithm will satisfy only 6 out of the 8 clauses, worse
than the algorithm from part (a). (If you don’t like that this is based on breaking
ties arbitrarily, consider repeating this example M times for some large M , and
repeating its negation M − 1 times; as M grows, this will still approach satisfying
only 3/4 of the clauses, instead of 7/8).

6

	Announcements
	Warm-Up
	Recap/Questions
	Derandomization via conditional expectation

