Class 11

Practice with LLL

Quick Recap

derandomization via conditional expectation

- Probabilistic method:
	- Let $G = (V, E)$ be a graph.
	- Let X be the number of edges that cross a random cut (S,\bar{S})
	- $\mathbb{E}[X] = |E|/2$
	- There is a cut with more than $|E|/2$ edges crossing it!

Quick Recap

derandomization via conditional expectation

- Probabilistic method:
	- Let $G = (V, E)$ be a graph.
	- Let X be the number of edges that cross a random cut (S,\bar{S})
	- $\mathbb{E}[X] = |E|/2$
	- There is a cut with more than $|E|/2$ edges crossing it!
- How do we find it?
	- First choose whether $v_1 \in S$ or not.
	- Choose it so that $\mathbb{E}[X |$ choice for $v_1] \geq |E|/2$
	- Iterate!

Quick Recap derandomization via conditional expectation

- Suppose you know that $\mathbf{E}[\text{something}]$ is good
- Suppose you can build [something] one choice at a time
- Then assuming that

E [something choices $1,2, ..., t-1$] is good, there is a way to make tth choice so that E [something | choices $1,2, ..., t$] is good.

• If you can find that way to make the tth choice efficiently, you have an algorithm!

Another example if you want more practice (check out agenda from Class 10)

$$
\varphi = (x_1 \vee \overline{x_2} \vee x_3) \wedge (x_2 \vee \overline{x_4} \vee x_1) \wedge \cdots
$$

- Say φ is a 3-CNF formula with n variables and m clauses, and 3 distinct variables in each clause.
- Show how to (efficiently) find a satisfying assignment so that at least 7/8 of the clauses are satisfied.

$$
\begin{array}{c}\n\text{If } \text{for } \text{fhs} \text{ is } \text{if } \text{for } \text{fhs} \text{ is } \text{if } \
$$

Recap: 2nd moment method and LLL

• Second Moment Method

$$
\mathbb{P}[\begin{array}{ccc} X = 0 \end{array}] \leq \frac{\text{Var}(X)}{(\mathbb{E}X)^{a}}
$$

· Lovasz Local Lemma (LLL)

Scy that
$$
A_1, A_2, ..., A_m
$$
 are $\overline{BAD} \xrightarrow{\text{EIFNTS}}$ so that

\n• $\overline{P}[A_i] \leq p \quad \forall i$

\n• $\overline{S} \xrightarrow{\text{each}} A_i$, $\overline{t} \xrightarrow{\text{true}} i a s e b$ $S_i \leq \text{Im} \xrightarrow{\text{as} \forall h \alpha t} A_i$ is multiply in a form $\{A_i : r \in S_i\}$ and $|S_i| \leq d$

\n• $4 \text{pd} \leq 1$ $\alpha R \leq p(d+1) \leq 1$

Jindep. $\mathbb{P}[\bigcap_i \overline{A}_i] > 0.$

Questions? 2nd MM, LLL, Quiz, ...?

Q1: n'th moment method

Let X be a real-valued random variable. Which of the following is always true? Check all that apply.

$$
\begin{aligned}\n\mathbf{Pr}[X=0] &\leq \frac{\mathbb{E}[(X-\mathbb{E}[X])^2]}{(\mathbb{E}[X])^2} \\
&\quad \mathbf{Pr}[X=0] \leq \frac{\mathbb{E}[(X-\mathbb{E}[X])^3]}{(\mathbb{E}[X])^3} \leq \qquad \text{# the RHS could be negative, } \frac{\mathbb{E}[X-\mathbb{E}[X])^4]}{\mathbb{E}[X-\mathbb{E}[X])^4} \\
&\quad \mathbf{Pr}[X=0] \leq \frac{\mathbb{E}[(X-\mathbb{E}[X])^4]}{(\mathbb{E}[X])^4}\n\end{aligned}
$$

$Q2$: Applying the 2^{nd} moment method

Suppose that X_1,\ldots,X_n are independent random variables so that for all i, X_i is $+1$ with probability $1/4$ and -1 with probability $3/4$. Let $X = \sum_{i=1}^n X_i$. What does the second-moment method say about $X²$

 $\bigcirc \frac{1}{4n}$ $\odot \frac{3}{n}$ $\bigcirc \frac{4}{n^2}$ $\bigcirc \frac{1}{4n^2}$

 $E[X_i^2] = 1$ $[E[X;]=-1/2]$ $Var(X) = \sum_{i=1}^{n} Var(X_i)$ $= \bigcap F[E[X_{1}^{2}]-E[X_{1}]^{2}]$ $= n \left[1 - \frac{1}{4} \right] = \frac{3n}{4}$ $P[X=0] \leq \frac{Var[X]}{(EX)^2} = \frac{3n/4}{n^2/4} = \frac{3}{n}$

- Color edges of K_n blue or red
- A_s is the event that clique formed by S is monochromatic, for $|S|=4$.
- WTS $Pr[\bigcap_{S} \overline{A_S}] \geq _$

What is the smallest you can take the parameter " p " to be in the LLL?

 \boxtimes \boxtimes $\frac{O\ 1/2}{O\ 1/8}$ Francochnanchic = $\frac{\partial \phi_{\text{max}}}{\partial \phi_{\text{min}}}$ What is the in = $\frac{1}{3}$ = $\frac{1}{3}$ = $\frac{1}{3}$ \odot 1/32 \leq $O(1/e)^6$

What is the smallest that you can take the parameter " d " to be in the LLL, for large n ?

 $\mathbf{\Theta}(n^2)$ $O(\Theta(n^3))$ $\bigcirc \Theta(n^6)$

Q3:

- Color edges of K_n blue or red
- A_s is the event that clique formed by S is monochromatic, for $|S|=4$.
-

 $\mathbb{P} \bigcap_{s} \overline{A}_{s} > 0$ => = coloning w/ no monochromatic K4 in Kn $6c \nvert n \leq n_o$

If $R_4 < n_0$, then there MUST be a
monochromatic K4 in Kn.

 $so R_4 \geq N_0$

$Q3.3$

2 Points

Suppose that you got a statement of the form $\Pr[\bigcap_S \overline{A_S}] > 0$, under the assumption that $n \leq n_0$ for some constant n_0 .

What would this statement imply for R_4 , the fourth Ramsey number?

\odot It would give a lower bound on R_4 .

 \bigcirc It would give an upper bound on R_4 .

 \bigcirc it would not directly imply anything about R_4 .

Plan for today

- More practice with LLL
	- Application to k-SAT
	- (Closure on the example set up in the minilecture video!)
- Yet more practice with the LLL
	- An example where the "mutually independent" definition is a bit more tricky!
- (If there's extra time we can go back to derandomization via conditional expectation)

Recall k -SAT

$\varphi = (x_1 \vee \overline{x_2} \vee x_3) \wedge (x_2 \vee \overline{x_4} \vee x_1) \wedge \cdots$

- n variables, m clauses.
- For today, each clause has exactly k distinct variables.
- Goal: a statement of the form:

As long as each variable appears in no more than clauses, then φ is satisfiable.

Let's practice the LLL!

Group Work

Suppose that each variable x_i is in at most t clauses, for some parameter t that will depend on k and that you'll work out in this problem. Apply the LLL to get a statement like the following:

Suppose that each variable is in at most t clauses of φ . Then φ is satisfiable.

- n variables, m clauses.
- For today, each clause has exactly k distinct variables.

Solutions

Suppose each variable is in \le ___________ clauses of φ . Then φ is satisfiable.

Solutions

Say each clause has EXACTLY k literals,
and each variable appears in $\leq 2^{k-2}/k$ clauses Ihm Then φ is satisfiable. this is our t

Setting up the LLL

• What are the A_i ?

• What is " p "?

Setting up the LLL

• What are the A_i ?

$$
A_i
$$
 = event that clause i is unsatisfied

• What is " p "?

$$
\mathbb{P}[A_i] = \frac{1}{2^k} \quad \text{so} \quad p \leftarrow \frac{1}{2^k}
$$

 $A_i = \begin{cases} i^{\text{th}} \text{ clause} & \text{NOT} \text{ satisfies} \end{cases}$

What is the parameter "d"?

$A_i = \begin{cases} i^{\text{th}} \text{ clause} & \text{NOT} \text{ satisfies} \end{cases}$

What is the parameter "d"?

 $d \leftarrow$ kt.

Applying the LLL

Applying the LLL

We need $d \cdot p \leq 1/4$

 $kt \cdot \frac{1}{2^{k}} \leq \frac{1}{4}$ $t \leq \frac{2^{k-2}}{k}$

Conclusion

Thm Say each clause has EXACTY
$$
k
$$
 literals,
and each variable appears in $\leq \frac{a^{k-2}}{k}$ classes
Then φ is satisfiable.

Conclusion

Illusion

\nIm Say each clause has EXACTY & literals, and each variable appears in
$$
\leq
$$
 $3^{k-2}/k$ clauses

\nThen φ is satisfiable.

\nThis is our t

- For example, if $k = 10$, then as long as each variable appears in at most 2^8 10 = 25.6 clauses (aka, in \leq 25 clauses), then φ is ALWAYS satisfiable!!
	- No matter how many variables or how many clauses!

Next up… sometimes computing "d" isn't so obvious

• Consider a set of m equations in n variables $x_1, ..., x_n$:

 $\sum_{j=1}^{n} a_j^{(1)} x_j \equiv b^{(1)} \mod 17$ $\sum_{j=1}^{n} a_j^{(2)} x_j \equiv b^{(2)} \mod 17$ (also assumethat there's at least one monzero term in each ean.

$$
a_j^{(i)} \in \{0, 1, ..., 16\}
$$

$$
b^{(i)} \in \{0, 1, ..., 16\}
$$

Assume that each variable x; appears in \leq 4 equations. ("aka₎ a $\begin{pmatrix} 1 & 1 \ 1 & 1 \end{pmatrix} = 0$ for all but 4 values of i

Group Work

With the setup above, prove that there exists an assignment to the variables such that *none* of the equations are satisfied.

Hint: Recall that because 17 is prime, for any $a \in \{1, \ldots, 16\}$ and any $b \in \{0, \ldots, 16\}$, the equation $ax \equiv b \mod 17$ has a unique solution for $x \in \{0, \ldots, 16\}$.

Hint: It might be helpful to go back to the definition of mutual independence when arguing about the value of d when applying the LLL.

Definition 1. Given events B and B_1, \ldots, B_k defined over some probability space, B is mutually independent of events $\{B_1, \ldots, B_k\}$ if the probability of B does not change if we condition on any subset of B_1, \ldots, B_k . Formally, for any subset $J \subseteq \{1, \ldots, k\}$,

 $Pr[B] = Pr[B] \cap_{i \in J} B_i$.

Setting up the LLL

• What are the A_i ?

• What is " p "?

$$
\sum_{j=1}^{n} a_j^{(1)} x_j \equiv b^{(1)} \mod 17
$$

$$
\sum_{j=1}^{n} a_j^{(2)} x_j \equiv b^{(2)} \mod 17
$$

$$
\vdots
$$

$$
\sum_{j=1}^{n} a_j^{(m)} x_j \equiv b^{(m)} \mod 17
$$

Setting up the LLL

• What are the A_i ? A_i = event that eqn i is satisfied

• What is " p "? $\mathbb{P}\left[A_i \right] = \mathbb{P} \left[\sum_{j=1}^{n} a_j^{(i)} x_j \equiv b^{(i)} \mod |7| \right]$ $\sum_{j=1}^{n} a_j^{(1)} x_j \equiv b^{(1)} \mod 17$ $\sum_{j=1}^{n} a_j^{(2)} x_j \equiv b^{(2)} \mod 17$ $= 1/17$ To see this, say were $\alpha_1^{(i)} \neq 0$. Condition on $x_{2_1...2}$ x_n \rightarrow 3 $\sum_{j}^{n} a_j^{(m)} x_j \equiv b^{(m)} \mod 17$ $\mathbb{P}\big[\ \alpha_1^{(i)} \cdot x_1 = b^{(i)} - \sum_{j=2}^n \alpha_j^{(i)} x_j \ \mid \ x_2,...,x_n \ \big] = 4/7.$

 A_i is the event that equation i is satisfied

What is the parameter "d"?

 $\sum_{j=1}^{n} a_j^{(1)} x_j \equiv b^{(1)} \mod 17$ $\sum_{j=1}^{n} a_j^{(2)} x_j \equiv b^{(2)} \mod 17$ $\sum^{n} a_j^{(m)} x_j \equiv b^{(m)} \mod 17$

Definition 1. Given events B and B_1, \ldots, B_k defined over some probability space, B is mutually independent of events $\{B_1, \ldots, B_k\}$ if the probability of B does not change if we condition on any subset of B_1, \ldots, B_k . Formally, for any subset $J \subseteq \{1, \ldots, k\}$,

 $Pr[B] = Pr[B] \cap_{i \in J} B_i$.

What is the parameter "d"?

($\leq n$ vars per egn, ≤ 4 other egns per variable). First hy: $d \le 4 \cdot n$? That's no good! We'd need:

 $dp \leq 1/4$ $(4n)(\frac{1}{17}) \leq \frac{1}{4}$ $n \leq \frac{17}{16}$...

Definition 1. Given events B and B_1, \ldots, B_k defined over some probability space, B is mutually independent of events $\{B_1,\ldots,B_k\}$ if the probability of B does not change if we condition on any subset of B_1, \ldots, B_k . Formally, for any subset $J \subseteq \{1, \ldots, k\}$,

 $Pr[B] = Pr[B | \bigcap_{i \in J} B_i].$

 $\sum_{j=1}a^{(1)}_jx_j\equiv b^{(1)}\mod 17$ $\sum_{j=1} a_j^{(2)} x_j \equiv b^{(2)} \mod 17$ $\sum a_j^{(m)} x_j \equiv b^{(m)} \mod 17$

A_i is the event that equation i is satisfied

What is the parameter "d"? Next trg: actually we can take ^d ⁼ 4. Next my. actually we can take $a = 4$.
Say whog $a_1^{(i)} \neq 0$, let $S_i = \{j \text{ s.t. } x_j \text{ appears in eqn. } j \}$ Let $J \subseteq EmJ \backslash S_{i}$. Let $J \subseteq Lm \cup S_i$.
Conditioning on $\bigcap_{j\in J} A_j$ closent say anything about x_1 . Thus $P[A_i | \bigcap_{i \in I} A_i] = \frac{1}{17} = P[A_i]$

by same argument as above.

Definition 1. Given events B and B_1, \ldots, B_k defined over some probability space, B is mutually independent of events $\{B_1,\ldots,B_k\}$ if the probability of B does not change if we condition on any subset of B_1, \ldots, B_k . Formally, for any subset $J \subseteq \{1, \ldots, k\}$,

 $Pr[B] = Pr[B] \cap_{i \in J} B_i$.

 $\sum a_j^{(1)} x_j \equiv b^{(1)} \mod 17$ $\sum a_j^{(2)} x_j \equiv b^{(2)} \mod 17$ $\sum a_j^{(m)} x_j \equiv b^{(m)} \mod 17$

$$
\rho \leftarrow \frac{1}{4}, \quad d \leftarrow 4
$$
\nConclusion

\n
$$
\rho \cdot d = \frac{4}{17} < \frac{1}{4}
$$

• There exists an assignment so that **none** of these are satisfied!

Here exists all assignment so that none of the
\n
$$
\cos(\lambda x)
$$

\nSo that none of the
\n
$$
\cos(\lambda x)
$$

\nSo that none of the
\n
$$
\sum_{j=1}^{n} a_j^{(1)} x_j \equiv b^{(1)} \mod 17
$$

\nand
$$
\sum_{j=1}^{n} a_j^{(2)} x_j \equiv b^{(2)} \mod 17
$$

\nTherefore,
$$
\sum_{j=1}^{n} a_j^{(m)} x_j \equiv b^{(m)} \mod 17
$$

Recap

- More practice with the LLL!
	- We saw how the LLL applies to k-SAT this will come up again in the minilectures for next time on the Algorithmic LLL.
	- The definition of "mutually independent" can be a bit subtle.

If there's more time...

- Derandomization via conditional expectation!
- 1. Let φ be a 3-CNF formula with *n* variables and *m* clauses, and 3 distinct variables in each clause. Use the method of derandomization via conditional expectation to give an efficient (polynomial in n, m) deterministic algorithm to find an assignment to φ so that at least a 7/8-fraction of the clauses are satisfied.

Recall that the expected number of clauses satisfied by a random assignment is $\frac{7}{8} \cdot m$

General strategy

Choose values (True/False) for
$$
x_1, x_2, x_3, ..., x_n
$$
 one at a
time.

$$
\text{At each step, make sure that } \mathbb{E}\left[\begin{array}{c} \text{#Sat.} \\ \text{clauses} \end{array} \middle| \begin{array}{c} \text{chokes for} \\ \text{$\chi_{1}, \dots, \chi_{t}$} \end{array} \right] \ge \frac{7m}{8}
$$

Why can we make a good choice?

Why can we make a good choice?

How do we make this choice efficiently?

How do we make this choice efficiently? \overline{r} κ e this choice κ this choice

How do we make this choice efficiently? \overline{r} α this choice κ e this choice λ is choice one of the state is 37 Million. ו
זר

of free variables left in C.

How do we make this choice efficiently? \overline{r} α this choice κ e this choice κ this choice λ ake this choice one of the state is 37 Million. ו
זר

How do we make this choice efficiently?
\nwant to know when this is larger than
$$
\frac{7m}{8}
$$

\n
$$
\mathbb{E} \left[\frac{4 \text{ sat}}{\text{class}} \mid \frac{d \text{noise} \cdot \text{for}}{x_1, ..., x_{t-1}}, x_t = \text{TRUE} \right] = \sum_{\text{classes } C} \mathbb{P} \left\{ C = \text{TRUE} \mid \frac{d \text{noise} \cdot \text{for}}{x_1, ..., x_{t-1}}, x_t = \text{TRUE} \right\}
$$
\nThis is 1 if the choice a have already made C, but it is 1- $\frac{4}{\sqrt{x}}$, where $\text{ke } \{0, 1, 2, 3\}$ is the $\frac{4}{\sqrt{x}}$ for each *l* is 1.

In particular, we can compute this efficiently. Time $O(m)$!