Class 11

Practice with LLL

Quick Recap

derandomization via conditional expectation

- Probabilistic method:
 - Let G = (V, E) be a graph.
 - Let X be the number of edges that cross a random cut (S, \overline{S})
 - $\mathbb{E}[\mathbf{X}] = |E|/2$
 - There is a cut with more than |E|/2 edges crossing it!

Quick Recap

derandomization via conditional expectation

- Probabilistic method:
 - Let G = (V, E) be a graph.
 - Let X be the number of edges that cross a random cut (S, \overline{S})
 - $\mathbb{E}[X] = |E|/2$
 - There is a cut with more than |E|/2 edges crossing it!
- How do we find it?
 - First choose whether $v_1 \in S$ or not.
 - Choose it so that $\mathbb{E}[X \mid \text{choice for } v_1] \ge |E|/2$
 - Iterate!

Quick Recap derandomization via conditional expectation

- Suppose you know that **E**[something] is good
- Suppose you can build [something] one choice at a time
- Then assuming that

E[something |choices 1,2 ..., t - 1] is good, there is a way to make tth choice so that **E**[something | choices 1,2 ..., t] is good.

If you can find that way to make the tth choice efficiently, you have an algorithm!

Another example if you want more practice (check out agenda from Class 10)

$$\varphi = (x_1 \lor \overline{x_2} \lor x_3) \land (x_2 \lor \overline{x_4} \lor x_1) \land \cdots$$

- Say φ is a 3-CNF formula with n variables and m clauses, and 3 distinct variables in each clause.
- Show how to (efficiently) find a satisfying assignment so that at least 7/8 of the clauses are satisfied.

Recap: 2nd moment method and LLL

Second Moment Method

$$\mathbb{P}\left[X=0\right] \leq \frac{\operatorname{Var}(X)}{\left(\mathbb{E}X\right)^2}$$

• Lovasz Local Lemma (LLL)

Questions? 2nd MM, LLL, Quiz, ...?

Q1: n'th moment method

Let X be a real-valued random variable. Which of the following is always true? Check all that apply.

$$Pr[X = 0] \leq \frac{\mathbb{E}[(X - \mathbb{E}[X])^2]}{(\mathbb{E}[X])^2}$$

$$Pr[X = 0] \leq \frac{\mathbb{E}[(X - \mathbb{E}[X])^3]}{(\mathbb{E}[X])^3} \qquad \text{the RHS could be} \\ \text{regative, eg } X = \begin{cases} +1 & \text{pr } S_{\text{eq}} \\ -1 & \text{pr } V_{\text{eq}} \end{cases}$$

$$Pr[X = 0] \leq \frac{\mathbb{E}[(X - \mathbb{E}[X])^4]}{(\mathbb{E}[X])^4}$$

Q2: Applying the 2nd moment method

Suppose that X_1, \ldots, X_n are independent random variables so that for all i, X_i is +1 with probability 1/4 and -1 with probability 3/4. Let $X = \sum_{i=1}^n X_i$. What does the second-moment method say about X?

 $Pr[X = 0] \leq ____$ $O \frac{1}{4n}$ $O \frac{3}{n}$ $O \frac{4}{n^2}$ $O \frac{1}{4n^2}$

 $|E[X^2] = 1$ $|\mathsf{E}[X_{:}] = -\frac{1}{2}$ $Var(X) = \sum_{i=1}^{n} Var(X_i)$ $= n \cdot \left[IE[X_{i}^{2}] - IE[X_{i}]^{2} \right]$ $= n \left[1 - \frac{1}{4} \right] = \frac{3n}{4}$ $\left[\mathbb{P} \left[X = 0 \right] \leq \frac{\operatorname{Var} \left[X \right]}{\left(\operatorname{IE} X \right)^2} = \frac{3n/4}{n^2/4} = \frac{3}{n} \right]$

Q3:

- Color edges of K_n blue or red
- A_S is the event that clique formed by S is monochromatic, for |S|=4.
- WTS $\Pr[\cap_S \overline{A_S}] \ge$ _____

What is the smallest you can take the parameter "p" to be in the LLL?

What is the smallest that you can take the parameter " d" to be in the LLL, for large n?

 $\Theta(n^2) \\ O \Theta(n^3) \\ O \Theta(n^6)$

Q3:

- Color edges of K_n blue or red
- A_S is the event that clique formed by S is monochromatic, for |S|=4.
- WTS $\Pr[\cap_S \overline{A_S}] \ge$ _____

 $P[(n_s \overline{A}_s] > 0]$ $\Rightarrow \exists coloning \omega no monochromatic Ky in Kn$ $for <math>n \leq n_o$

If Ry < No, than there MUST be a monochromatic Ky in Kno

so $R_4 \ge N_0$

Q3.3

2 Points

Suppose that you got a statement of the form $\Pr[\bigcap_S \overline{A_S}] > 0$, under the assumption that $n \le n_0$ for some constant n_0 .

What would this statement imply for R_4 , the fourth Ramsey number?

\odot It would give a lower bound on R_4 .

O It would give an upper bound on *R*₄.O It would not directly imply anything about *R*₄.

Plan for today

- More practice with LLL
 - Application to k-SAT
 - (Closure on the example set up in the minilecture video!)
- Yet more practice with the LLL
 - An example where the "mutually independent" definition is a bit more tricky!
- (If there's extra time we can go back to derandomization via conditional expectation)

Recall k-SAT

$\varphi = (x_1 \lor \overline{x_2} \lor x_3) \land (x_2 \lor \overline{x_4} \lor x_1) \land \cdots$

- *n* variables, *m* clauses.
- For today, each clause has exactly k distinct variables.
- Goal: a statement of the form:

As long as each variable appears in no more than _____ clauses, then φ is satisfiable.

Let's practice the LLL!

Group Work

Suppose that each variable x_i is in at most t clauses, for some parameter t that will depend on k and that you'll work out in this problem. Apply the LLL to get a statement like the following:

Suppose that each variable is in at most t clauses of φ . Then φ is satisfiable.

- *n* variables, *m* clauses.
- For today, each clause has exactly k distinct variables.

Solutions

Suppose each variable is in \leq clauses of φ . Then φ is satisfiable.

Solutions

Setting up the LLL

• What are the A_i ?

• What is "*p*"?

Setting up the LLL

• What are the A_i ?

• What is "*p*"?

$$\mathbb{P}[A_i] = \frac{1}{2^k}$$
, so $p \in \mathbb{Z}^k$

A: = { it clause NUT satisfied }

What is the parameter "d"?

Ai = { it clause NUT satisfied }

What is the parameter "d"?

 $d \in kt$

Applying the LLL

Applying the LLL

We need $d \cdot p \leq 1/4$

 $kt \cdot \frac{1}{2^{k}} \leq \frac{1}{4}$ $L \leq \frac{2^{k-2}}{k}$

Conclusion

$$\frac{Thm}{Lm} = \sum_{k=0}^{\infty} \frac{1}{k} \frac{1$$

Conclusion

$$\frac{Thm}{Thm} \quad Say each clause has EXACTLY & literals, and each variable appears in $\leq \frac{2^{k-2}}{k}$ clauses Then φ is satisfiable. This is our t$$

- For example, if k = 10, then as long as each variable appears in at most $\frac{2^8}{10} = 25.6$ clauses (aka, in ≤ 25 clauses), then φ is ALWAYS satisfiable!!
 - No matter how many variables or how many clauses!

Next up... sometimes computing "d" isn't so obvious

• Consider a set of m equations in n variables x_1, \ldots, x_n :

$$\sum_{j=1}^{n} a_j^{(1)} x_j \equiv b^{(1)} \mod 17$$

$$\sum_{j=1}^{n} a_j^{(2)} x_j \equiv b^{(2)} \mod 17$$

$$\vdots$$

$$\sum_{j=1}^{n} a_j^{(m)} x_j \equiv b^{(m)} \mod 17$$
Also assume that there's at least one more than in each eqn.

$$a_{j}^{(i)} \in \{0, 1, ..., 16\}$$

 $b^{(i)} \in \{0, 1, ..., 16\}$

Assume that each variable x_j appears in ≤ 4 equations. (aku, $a_j^{(i)} = 0$ for all but 4 values of i)

Group Work

With the setup above, prove that there exists an assignment to the variables such that *none* of the equations are satisfied.

Hint: Recall that because 17 is prime, for any $a \in \{1, ..., 16\}$ and any $b \in \{0, ..., 16\}$, the equation $ax \equiv b \mod 17$ has a unique solution for $x \in \{0, ..., 16\}$.

Hint: It might be helpful to go back to the definition of mutual independence when arguing about the value of d when applying the LLL.

Definition 1. Given events B and B_1, \ldots, B_k defined over some probability space, B is mutually independent of events $\{B_1, \ldots, B_k\}$ if the probability of B does not change if we condition on any subset of B_1, \ldots, B_k . Formally, for any subset $J \subseteq \{1, \ldots, k\}$,

 $\Pr[B] = \Pr[B| \cap_{i \in J} B_i].$

Setting up the LLL

• What are the A_i ?

• What is "*p*"?

$$\sum_{j=1}^{n} a_{j}^{(1)} x_{j} \equiv b^{(1)} \mod 17$$
$$\sum_{j=1}^{n} a_{j}^{(2)} x_{j} \equiv b^{(2)} \mod 17$$
$$\vdots$$
$$\sum_{j=1}^{n} a_{j}^{(m)} x_{j} \equiv b^{(m)} \mod 17$$

Setting up the LLL

• What are the A_i ? $A_i = event that eqn i is satisfied$

• What is "p"? $\begin{aligned}
& \mathbb{P}\left[A_{i}\right] = \mathbb{P}\left[\sum_{j=1}^{n} a_{j}^{(i)}\chi_{j} \equiv b^{(i)} \mod |7|\right] & \sum_{j=1}^{n} a_{j}^{(1)}x_{j} \equiv b^{(1)} \mod |7| \\
& = \frac{1}{\sqrt{7}} & \sum_{j=1}^{n} a_{j}^{(2)}x_{j} \equiv b^{(2)} \mod |7| \\
& \sum_{j=1}^{n} a_{j}^{(2)}x_{j} \equiv b^{(2)} \mod |7| \\
& \vdots \\
& \mathbb{P}\left[a_{1}^{(i)} \cdot \chi_{1} \equiv b^{(i)} - \sum_{j=2}^{n} a_{j}^{(i)}\chi_{j} \mid \chi_{2,\dots,\chi_{n}} \right] = \frac{4}{7}.
\end{aligned}$

 A_i is the event that equation i is satisfied

What is the parameter "d"?

 $\sum_{j=1}^{n} a_j^{(1)} x_j \equiv b^{(1)} \mod 17$ $\sum_{j=1}^{n} a_j^{(2)} x_j \equiv b^{(2)} \mod 17$ \vdots $\sum_{j=1}^{n} a_j^{(m)} x_j \equiv b^{(m)} \mod 17$

Definition 1. Given events B and B_1, \ldots, B_k defined over some probability space, B is mutually independent of events $\{B_1, \ldots, B_k\}$ if the probability of B does not change if we condition on any subset of B_1, \ldots, B_k . Formally, for any subset $J \subseteq \{1, \ldots, k\}$,

 $\Pr[B] = \Pr[B| \cap_{i \in J} B_i].$

 A_i is the event that equation i is satisfied

What is the parameter "d"?

First ty: $d \le 4 \cdot n$? ($\le n vars per eqn, \le 4 \text{ other eqns per variable}$). Theet's no good! We'd need:

 $dp \leq \frac{1}{4} \\ (4n)(\frac{1}{17}) \leq \frac{1}{4} \\ n \leq \frac{17}{16} \\ \dots \\ n$

Definition 1. Given events B and B_1, \ldots, B_k defined over some probability space, B is mutually independent of events $\{B_1, \ldots, B_k\}$ if the probability of B does not change if we condition on any subset of B_1, \ldots, B_k . Formally, for any subset $J \subseteq \{1, \ldots, k\}$,

 $\Pr[B] = \Pr[B| \cap_{i \in J} B_i].$

 $\sum_{j=1}^{n} a_{j}^{(1)} x_{j} \equiv b^{(1)} \mod 17$ $\sum_{j=1}^{n} a_{j}^{(2)} x_{j} \equiv b^{(2)} \mod 17$ \vdots $\sum_{j=1}^{n} a_{j}^{(m)} x_{j} \equiv b^{(m)} \mod 17$

A_i is the event that equation i is satisfied

What is the parameter "d"? Next mg: a clucelly we can take d = 4. Say whog $a_1^{(i)} \neq 0$, let $S_i = \{j : s.t. X_j : appears in eqn. j \}$ Let J = [m]\S: Conditioning on $\bigcap_{j \in J} A_j$ doesn't say anything about χ_1 . Thus $\mathbb{P}[A_i \mid \bigcap_{i \in \mathcal{T}} A_i] = \frac{1}{17} = \mathbb{P}[A_i]$

by same argument as above.

Definition 1. Given events B and B_1, \ldots, B_k defined over some probability space, B is mutually independent of events $\{B_1, \ldots, B_k\}$ if the probability of B does not change if we condition on any subset of B_1, \ldots, B_k . Formally, for any subset $J \subseteq \{1, \ldots, k\}$,

 $\Pr[B] = \Pr[B| \cap_{i \in J} B_i].$

 $\sum_{j=1}^{n} a_j^{(1)} x_j \equiv b^{(1)} \mod 17$ $\sum_{j=1}^{n} a_j^{(2)} x_j \equiv b^{(2)} \mod 17$ \vdots $\sum_{j=1}^{n} a_j^{(m)} x_j \equiv b^{(m)} \mod 17$

$$P \leftarrow V_{17}, d \leftarrow 4$$

Conclusion
$$P \cdot d = \frac{4}{17} < \frac{1}{4}$$

• There exists an assignment so that **none** of these are satisfied!

each
$$\chi_j$$

appears in $\leq \psi$ eqns.
$$\sum_{j=1}^n a_j^{(1)} x_j \equiv b^{(1)} \mod 17$$
$$\sum_{j=1}^n a_j^{(2)} x_j \equiv b^{(2)} \mod 17$$
$$\vdots$$
$$\sum_{j=1}^n a_j^{(m)} x_j \equiv b^{(m)} \mod 17$$

Recap

- More practice with the LLL!
 - We saw how the LLL applies to k-SAT this will come up again in the minilectures for next time on the Algorithmic LLL.
 - The definition of "mutually independent" can be a bit subtle.

If there's more time...

- Derandomization via conditional expectation!
- Let φ be a 3-CNF formula with n variables and m clauses, and 3 distinct variables in each clause. Use the method of derandomization via conditional expectation to give an efficient (polynomial in n, m) deterministic algorithm to find an assignment to φ so that at least a 7/8-fraction of the clauses are satisfied.

Recall that the expected number of clauses satisfied by a random assignment is $\frac{7}{8} \cdot m$

General strategy

At each step, make sure that
$$IE \begin{bmatrix} \# Sat. \\ \chi_{1,...,\chi_{t}} \end{bmatrix} \ge \frac{7m}{8}$$

Why can we make a good choice?

Why can we make a good choice?

Want to know when this is larger than
$$\frac{7m}{8}$$

 $IE[\text{#sat} choices for X_{1,5,...,X_{t-1}}, X_t = TRUE] = \sum_{clauses}^{7} IP[C = TRUE choices for X_{1,5,...,X_{t-1}}, X_t = TRUE]$
This is 1 if the choices have already made C true.
Otherwise it's $1 - \frac{1}{2^k}$, where $k \in \{0, 1, 2, 3\}$ is the $\#$ of free variables left in C.

In particular, we can compute this efficiently. Time O(m) !