
Class 12
Algorithmic LLL



Announcements

• HW5 due Friday
• HW6 out now!
• HW7 isn’t due until after fall break!  (Friday 12/2)
• No class on Tuesday: Democracy Day!

If you are eligible to vote, then !



Recap: Algorithmic LLL (for k-SAT)

• Given 𝜑:
• Choose a random assignment 𝜎 for each of the variables that appear in 𝜑
• While there is some clause 𝐶 of 𝜑 that is not satisfied:
• Update 𝜎 by randomly re-selecting the variables that appear in 𝐶.

• Return 𝜎

• Theorem:
• Suppose that each clause 𝐶 in 𝜑 shares variables with at most 𝑑 + 1 = 2!"#

clauses (including 𝐶 itself), for some constant 𝑐.
• Then 𝜑 is satisfiable and the algorithm above finds a satisfying assignment 

quickly.

𝜑 is a 𝑘-CNF formula on 𝑛 variables with 𝑚 clauses.



Algorithmic LLL more generally
• Given 𝑉 and 𝒜:
• Choose a random assignment 𝜎( for each of the random variables 𝑣 ∈ 𝑉
• While there is some 𝐴 ∈𝒜 so that 𝐴 𝜎 = 1:
• Choose (arbitrarily) an event 𝐴 with 𝐴 𝜎 = 1.
• Update 𝜎 by re-selecting {𝜎(: 𝑣 ∈ Vbl 𝐴 } randomly.

• Suppose that for all 𝐴 ∈ 𝒜:
• Γ 𝐴 ≤ 𝑑 + 1
• Pr 𝐴 ≤ )

*(,-))

• Then this algorithm will find an assignment to the variables in 𝑉 so 
that no event of 𝒜 occurs with 𝑂 𝒜

"#$
re-randomizations.

𝒜 is a collection of bad events determined by variables in V.
Vbl(A) is the set of variables involved with 𝐴 ∈ 𝒜



Proof of Algorithmic LLL

• Add some print statements to our algorithm.
• If the algorithm runs for too long, it will be too good of a compression

algorithm.

Algorithm

Random bits

Print statements

Formula 𝜑 Assignment 𝜎



Questions?
Algorithmic LLL, Quiz?



Q1: Applying alg. LLL

• 𝑆$, 𝑆%, … , 𝑆& ⊂ 𝑋 are sets of size 𝑘 < 𝑋 = 𝑁
• Each 𝑆' intersects at most 10 other sets 𝑆(
• Color points of X red or blue iid with prob ½.
• 𝐴' is the event that 𝑆' is monochromatic.

• |V|=
• d =
• For what k does alg. LLL apply?
• What is expected number of re-randomizations? 



Q2.  Changing the proof

• What if we print “trying to fix clause 𝑖ℓ” instead of “trying to fix the 
ℓ’th child”?

• Q2.1 How many bits get outputted in print statements?

• Q2.2. What would that prove?



Today: More practice with the Algorithmic LLL

• We saw the proof for k-SAT
• Today you’ll prove it for set coloring!



The problem
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• 𝑛 points, {1,2, … , 𝑛}
• 𝑚 sets, 𝑆$, 𝑆%, … , 𝑆* ⊆ {1, 2, … , 𝑛}
• Each set has size 𝑘.
• Each set overlaps with no more than 𝑑

other sets.
• Goal: color the 𝑛 points red or blue so 

that none of the sets is monochromatic.
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Algorithmic LLL gives an algorithm to do this

• While not done:
• Pick a monochromatic set, 𝑆3.
• Re-color all of the numbers in 𝑆3, uniformly at random.

• But we didn’t prove that this works.
• We only proved it for k-SAT

• Goal of today: 
• Mimic the k-SAT argument to give an algorithm that provably works for no-

monochromatic-coloring.



Quick recap of the proof idea for k-SAT
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Random bits

Print statements
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• We wrote the algorithm in a recursive way and added some print statements.
• From the print statements, you could figure out the random bits that went into the 

algorithm.
• If the algorithm runs for too long (too many re-randomizations), then we can 

compress the random bits!
• But that’s impossible.



Group work!

• Give a proof!
• What is the same between the k-SAT proof and this proof? 
• What needs to change?

Outline:
• We wrote the algorithm in a recursive way and added some print statements.
• From the print statements, you could figure out the random bits that went into the algorithm.
• If the algorithm runs for too long (too many re-randomizations), then we can compress the random bits!
• But that’s impossible.



For inspiration, here was the k-SAT algorithm
Your job: adapt to set-coloring!

• FindSat(𝜑 = 𝐶) ∧ 𝐶4 ∧ ⋯∧ 𝐶5):
• Choose a random assignment 𝜎 for each of the variables that appear in 𝜑
• For each clause 𝐶3 in 𝜑 that is not satisfied:
• 𝜎 ← Fix(𝜑, 𝑖, 𝜎)

• Return 𝜎

• Fix(𝜑, 𝑖, 𝜎):
• Update 𝜎 by re-randomizing every variable that appears in the clause 𝐶3
• Let 𝐶3! , 𝐶3" , … 𝐶3#$! be the clauses that share variables with 𝐶3
• For 𝑗 = 1,… , 𝑑 + 1:
• If 𝐶3% is violated:
• 𝜎 ←Fix( 𝜑, 𝑖6 , 𝜎)

• Return 𝜎

Fixing 
set 𝑖!

Trying to fix 
the 𝑗’th childAll done 

with this 
level.

After 𝑇 re-randomizations, 

I give up.  I’ve 
got 𝜎



What needs to change?
• FindSat(𝜑 = 𝐶) ∧ 𝐶4 ∧ ⋯∧ 𝐶5):
• Choose a random assignment 𝜎 for each of the variables that appear in 𝜑
• For each clause 𝐶3 in 𝜑 that is not satisfied:
• 𝜎 ← Fix(𝜑, 𝑖, 𝜎)

• Return 𝜎

• Fix(𝜑, 𝑖, 𝜎):
• Update 𝜎 by re-randomizing every variable that appears in the clause 𝐶3
• Let 𝐶3! , 𝐶3" , … 𝐶3#$! be the clauses that share variables with 𝐶3
• For 𝑗 = 1,… , 𝑑 + 1:
• If 𝐶3% is violated:
• 𝜎 ←Fix( 𝜑, 𝑖6 , 𝜎)

• Return 𝜎

Fixing 
set 𝑖!

Trying to fix 
the 𝑗’th childAll done 

with this 
level.

After 𝑇 re-randomizations, 

I give up.  I’ve 
got 𝜎



Our algorithm?
• FindSat(𝑆), 𝑆4, … , 𝑆5):
• Choose a random coloring 𝜎 for each of numbers
• For each 𝑆3 that is monochromatic:
• 𝜎 ← Fix(𝑖, 𝜎)

• Return 𝜎

• Fix(𝑖, 𝜎):
• Update 𝜎 by re-randomizing every number in 𝑆3
• Let 𝑆3! , 𝑆3" , … 𝑆3#$! be the sets that intersect 𝑆3
• For 𝑗 = 1,… , 𝑑 + 1:
• If 𝑆3% is monochromatic:
• 𝜎 ←Fix(𝑖6 , 𝜎)

• Return 𝜎

Fixing set 
𝑖!

Trying to fix 
the 𝑗’th childAll done 

with this 
level.

After 𝑇 re-randomizations, 

I give up.  I’ve 
got 𝜎



To do the proof
• We need to count the number of random bits that go in in the first 𝑇

re-randomizations.
• We need to count the number of bits of print statements that come 

out in the first 𝑇 re-randomizations.
• We need to argue that we can recover the random bits that go in 

from the print statements that come out.

Algorithm
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Whoops!  This 
doesn’t hold!!



Recovering the random bits
example

• The print statements allow us to reconstruct the recursion tree.
• Then…

1 2 3 4 5 6 n…
Say we know the coloring AFTER we re-randomized to fix the j’th child.  
(We know the final assignment since it was printed out, and we’re working backwards.)
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Recovering the random bits
example

• The print statements allow us to reconstruct the recursion tree.
• Then…

1 2 3 4 5 6 n…

1 2 3 4 5 6 n…

Trying to fix 
the 𝑗’th child

Since I know 
the recursion 

tree, I know 
that at this 

point “the 𝑗’th
child” means 𝑆$

Say we know the coloring AFTER we re-randomized to fix the j’th child.  
(We know the final assignment since it was printed out, and we’re working backwards.)

𝑆.

These must have been all blue or 
all red, but we don’t know which.



Our algorithm
• FindSat(𝑆), 𝑆4, … , 𝑆5):
• Choose a random coloring 𝜎 for each of numbers
• For each 𝑆3 that is monochromatic:
• 𝜎 ← Fix(𝑖, 𝜎)

• Return 𝜎

• Fix(𝑖, 𝜎):
• Update 𝜎 by re-randomizing every number in 𝑆3
• Let 𝑆3! , 𝑆3" , … 𝑆3#$! be the sets that intersect 𝑆3
• For 𝑗 = 1,… , 𝑑 + 1:
• If 𝑆3% is monochromatic:
• 𝜎 ←Fix(𝑖6 , 𝜎)

• Return 𝜎

Fixing set 𝑖!

Trying to fix 
the 𝑗’th child

All done 
with this 

level.
After 𝑇 re-randomizations, 

I give up.  I’ve 
got 𝜎

…because it 
was all red! 
(or blue, as 

appropriate)



Recovering the random bits
example
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• Then…
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Trying to fix 
the 𝑗’th child

Since I know 
the recursion 

tree, I know 
that at this 

point “the 𝑗’th
child” means 𝑆$

Say we know the coloring AFTER we re-randomized to fix the j’th child.  
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Recovering the random bits
example

• The print statements allow us to reconstruct the recursion tree.
• Then…

1 2 3 4 5 6 n…

1 2 3 4 5 6 n…

Trying to fix 
the 𝑗’th child

Since I know 
the recursion 

tree, I know 
that at this 

point “the 𝑗’th
child” means 𝑆$

Say we know the coloring AFTER we re-randomized to fix the j’th child.  
(We know the final assignment since it was printed out, and we’re working backwards.)

𝑆.
…because it 
was all red!

Now we know what this assignment was, 
so we can keep working backwards!



To do the proof
• We need to count the number of random bits that go in in the first 𝑇

re-randomizations.
• We need to count the number of bits of print statements that come 

out in the first 𝑇 re-randomizations.
• We need to argue that we can recover the random bits that go in 

from the print statements that come out.
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Our algorithm
• FindSat(𝑆), 𝑆4, … , 𝑆5):
• Choose a random coloring 𝜎 for each of numbers
• For each 𝑆3 that is monochromatic:
• 𝜎 ← Fix(𝑖, 𝜎)

• Return 𝜎

• Fix(𝑖, 𝜎):
• Update 𝜎 by re-randomizing every number in 𝑆3
• Let 𝑆3! , 𝑆3" , … 𝑆3#$! be the sets that intersect 𝑆3
• For 𝑗 = 1,… , 𝑑 + 1:
• If 𝑆3% is monochromatic:
• 𝜎 ←Fix(𝑖6 , 𝜎)

• Return 𝜎

Fixing 
set 𝑖!

Trying to fix 
the 𝑗’th child

All done 
with this 

level.
After 𝑇 re-randomizations, 

I give up.  I’ve 
got 𝜎

…because it 
was all red! 
(or blue, as 

appropriate)

Random bits in:



Our algorithm
• FindSat(𝑆), 𝑆4, … , 𝑆5):
• Choose a random coloring 𝜎 for each of numbers
• For each 𝑆3 that is monochromatic:
• 𝜎 ← Fix(𝑖, 𝜎)

• Return 𝜎

• Fix(𝑖, 𝜎):
• Update 𝜎 by re-randomizing every number in 𝑆3
• Let 𝑆3! , 𝑆3" , … 𝑆3#$! be the sets that intersect 𝑆3
• For 𝑗 = 1,… , 𝑑 + 1:
• If 𝑆3% is monochromatic:
• 𝜎 ←Fix(𝑖6 , 𝜎)

• Return 𝜎

Trying to fix 
the 𝑗’th child

All done 
with this 

level.
After 𝑇 re-randomizations, 

I give up.  I’ve 
got 𝜎

…because it 
was all red! 
(or blue, as 

appropriate)

Bits out:

Also 
“all 
done”

Fixing 
set 𝑖!



Win if random bits in ≫ bits out
aka, then we’d get a contradiction and conclude that there must be < 𝑇
re-randomizations.
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Win if random bits in ≫ bits out
aka, then we’d get a contradiction and conclude that there must be < 𝑇
re-randomizations.

Want:

Aka:



What happens if there are 𝑡 > 2 colors?



Our algorithm
• FindSat(𝑆), 𝑆4, … , 𝑆5):
• Choose a random coloring 𝜎 for each of numbers
• For each 𝑆3 that is monochromatic:
• 𝜎 ← Fix(𝑖, 𝜎)

• Return 𝜎

• Fix(𝑖, 𝜎):
• Update 𝜎 by re-randomizing every number in 𝑆3
• Let 𝑆3! , 𝑆3" , … 𝑆3#$! be the sets that intersect 𝑆3
• For 𝑗 = 1,… , 𝑑 + 1:
• If 𝑆3% is monochromatic:
• 𝜎 ←Fix(𝑖6 , 𝜎)

• Return 𝜎

Trying to fix 
the 𝑗’th child

All done 
with this 

level.
After 𝑇 re-randomizations, 

I give up.  I’ve 
got 𝜎

…because it was all red! 
(or blue, or purple, or…. 

as appropriate)

Fixing 
set 𝑖!



Recovering the random bits
example

• The print statements allow us to reconstruct the recursion tree.
• Then…

1 2 3 4 5 6 n…

1 2 3 4 5 6 n…

Trying to fix 
the 𝑗’th child

Since I know 
the recursion 

tree, I know 
that at this 

point “the 𝑗’th
child” means 𝑆$

Say we know the coloring AFTER we re-randomized to fix the j’th child.  
(We know the final assignment since it was printed out, and we’re working backwards.)

𝑆.
…because it 

was all green!

Now we know what this assignment was, 
so we can keep working backwards!



To do the proof
• We need to count the number of random bits that go in in the first 𝑇

re-randomizations.
• We need to count the number of bits of print statements that come 

out in the first 𝑇 re-randomizations.
• We need to argue that we can recover the random bits that go in 

from the print statements that come out.

Algorithm

Random bits

Print statements

Formula 𝜑 Assignment 𝜎



Our algorithm
• FindSat(𝑆), 𝑆4, … , 𝑆5):
• Choose a random coloring 𝜎 for each of numbers
• For each 𝑆3 that is monochromatic:
• 𝜎 ← Fix(𝑖, 𝜎)

• Return 𝜎

• Fix(𝑖, 𝜎):
• Update 𝜎 by re-randomizing every number in 𝑆3
• Let 𝑆3! , 𝑆3" , … 𝑆3#$! be the sets that intersect 𝑆3
• For 𝑗 = 1,… , 𝑑 + 1:
• If 𝑆3% is monochromatic:
• 𝜎 ←Fix(𝑖6 , 𝜎)

• Return 𝜎

Trying to fix 
the 𝑗’th child

All done 
with this 

level.
After 𝑇 re-randomizations, 

I give up.  I’ve 
got 𝜎

…because it was all red! 
(or blue, or purple, or…. 

as appropriate)

Random bits in:

⋅ log(𝑡)

𝑘 ⋅ log 𝑡 bits 
per re-
randomization.

Fixing 
set 𝑖!



Our algorithm
• FindSat(𝑆), 𝑆4, … , 𝑆5):
• Choose a random coloring 𝜎 for each of numbers
• For each 𝑆3 that is monochromatic:
• 𝜎 ← Fix(𝑖, 𝜎)

• Return 𝜎

• Fix(𝑖, 𝜎):
• Update 𝜎 by re-randomizing every number in 𝑆3
• Let 𝑆3! , 𝑆3" , … 𝑆3#$! be the sets that intersect 𝑆3
• For 𝑗 = 1,… , 𝑑 + 1:
• If 𝑆3% is monochromatic:
• 𝜎 ←Fix(𝑖6 , 𝜎)

• Return 𝜎

Trying to fix 
the 𝑗’th child

All done 
with this 

level.
After 𝑇 re-randomizations, 

I give up.  I’ve 
got 𝜎

Bits out:

Also 
“all 
done”

log(t)

…because it was all red! 
(or blue, or purple, or…. 

as appropriate)

Fixing 
set 𝑖!



Win if random bits in ≫ bits out
aka, then we’d get a contradiction and conclude that there must be < 𝑇
re-randomizations.
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log(t)

log(t)
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aka, then we’d get a contradiction and conclude that there must be < 𝑇
re-randomizations.

Random bits in:

Bits out:

Want:

log(t)
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Want:
log(t)

log(t)

Aka:
log(t)
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Win if random bits in ≫ bits out
aka, then we’d get a contradiction and conclude that there must be < 𝑇
re-randomizations.

Want:
log(t)

log(t)

Aka:
log(t)

log(t)



Conclusion

As long as 𝑘 ≥ /01 "#$
/01 2

+ 10000, we can find a good coloring with 

poly(𝑚) re-randomizations!



How does this compare to the general 
constructive LLL in the lecture notes?
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How does this compare to the general 
constructive LLL in the lecture notes?

Same thing!



Conclusions

• As long as 𝑘 ≥ /01 "#$
/01 2

+ 10000, we can find a good coloring with 
poly(𝑚) re-randomizations!

• You now have some idea of how you might adapt this proof to deal 
with other examples (aka, ones with Pr 𝐴' ≤ 𝑝 for a general 𝑝)….

• is a very cute idea.Algorithm

Random bits

Print statements

Formula 𝜑 Assignment 𝜎
(This method of proof is called 
“entropy compression”)


