
Class 12
Algorithmic LLL

Announcements

• HW5 due Friday
• HW6 out now!
• HW7 isn’t due until after fall break! (Friday 12/2)
• No class on Tuesday: Democracy Day!

If you are eligible to vote, then !

Recap: Algorithmic LLL (for k-SAT)

• Given 𝜑:
• Choose a random assignment 𝜎 for each of the variables that appear in 𝜑
• While there is some clause 𝐶 of 𝜑 that is not satisfied:
• Update 𝜎 by randomly re-selecting the variables that appear in 𝐶.

• Return 𝜎

• Theorem:
• Suppose that each clause 𝐶 in 𝜑 shares variables with at most 𝑑 + 1 = 2!"#

clauses (including 𝐶 itself), for some constant 𝑐.
• Then 𝜑 is satisfiable and the algorithm above finds a satisfying assignment

quickly.

𝜑 is a 𝑘-CNF formula on 𝑛 variables with 𝑚 clauses.

Algorithmic LLL more generally
• Given 𝑉 and 𝒜:
• Choose a random assignment 𝜎(for each of the random variables 𝑣 ∈ 𝑉
• While there is some 𝐴 ∈𝒜 so that 𝐴 𝜎 = 1:
• Choose (arbitrarily) an event 𝐴 with 𝐴 𝜎 = 1.
• Update 𝜎 by re-selecting {𝜎(: 𝑣 ∈ Vbl 𝐴 } randomly.

• Suppose that for all 𝐴 ∈ 𝒜:
• Γ 𝐴 ≤ 𝑑 + 1
• Pr 𝐴 ≤)

*(,-))

• Then this algorithm will find an assignment to the variables in 𝑉 so
that no event of 𝒜 occurs with 𝑂 𝒜

"#$
re-randomizations.

𝒜 is a collection of bad events determined by variables in V.
Vbl(A) is the set of variables involved with 𝐴 ∈ 𝒜

Proof of Algorithmic LLL

• Add some print statements to our algorithm.
• If the algorithm runs for too long, it will be too good of a compression

algorithm.

Algorithm

Random bits

Print statements

Formula 𝜑 Assignment 𝜎

Questions?
Algorithmic LLL, Quiz?

Q1: Applying alg. LLL

• 𝑆$, 𝑆%, … , 𝑆& ⊂ 𝑋 are sets of size 𝑘 < 𝑋 = 𝑁
• Each 𝑆' intersects at most 10 other sets 𝑆(
• Color points of X red or blue iid with prob ½.
• 𝐴' is the event that 𝑆' is monochromatic.

• |V|=
• d =
• For what k does alg. LLL apply?
• What is expected number of re-randomizations?

Q2. Changing the proof

• What if we print “trying to fix clause 𝑖ℓ” instead of “trying to fix the
ℓ’th child”?

• Q2.1 How many bits get outputted in print statements?

• Q2.2. What would that prove?

Today: More practice with the Algorithmic LLL

• We saw the proof for k-SAT
• Today you’ll prove it for set coloring!

The problem

1 2

3

4

5

𝑆!

𝑆"

𝑆#

• 𝑛 points, {1,2, … , 𝑛}
• 𝑚 sets, 𝑆$, 𝑆%, … , 𝑆* ⊆ {1, 2, … , 𝑛}
• Each set has size 𝑘.
• Each set overlaps with no more than 𝑑

other sets.
• Goal: color the 𝑛 points red or blue so

that none of the sets is monochromatic.

The problem

• 𝑛 points, {1,2, … , 𝑛}
• 𝑚 sets, 𝑆$, 𝑆%, … , 𝑆* ⊆ {1, 2, … , 𝑛}
• Each set has size 𝑘.
• Each set overlaps with no more than 𝑑

other sets.
• Goal: color the 𝑛 points red or blue so

that none of the sets is monochromatic.
1 2

3

4

5

𝑆!

𝑆"

𝑆#

Algorithmic LLL gives an algorithm to do this

• While not done:
• Pick a monochromatic set, 𝑆3.
• Re-color all of the numbers in 𝑆3, uniformly at random.

• But we didn’t prove that this works.
• We only proved it for k-SAT

• Goal of today:
• Mimic the k-SAT argument to give an algorithm that provably works for no-

monochromatic-coloring.

Quick recap of the proof idea for k-SAT

Algorithm

Random bits

Print statements

Formula 𝜑 Assignment 𝜎

• We wrote the algorithm in a recursive way and added some print statements.
• From the print statements, you could figure out the random bits that went into the

algorithm.
• If the algorithm runs for too long (too many re-randomizations), then we can

compress the random bits!
• But that’s impossible.

Group work!

• Give a proof!
• What is the same between the k-SAT proof and this proof?
• What needs to change?

Outline:
• We wrote the algorithm in a recursive way and added some print statements.
• From the print statements, you could figure out the random bits that went into the algorithm.
• If the algorithm runs for too long (too many re-randomizations), then we can compress the random bits!
• But that’s impossible.

For inspiration, here was the k-SAT algorithm
Your job: adapt to set-coloring!

• FindSat(𝜑 = 𝐶) ∧ 𝐶4 ∧ ⋯∧ 𝐶5):
• Choose a random assignment 𝜎 for each of the variables that appear in 𝜑
• For each clause 𝐶3 in 𝜑 that is not satisfied:
• 𝜎 ← Fix(𝜑, 𝑖, 𝜎)

• Return 𝜎

• Fix(𝜑, 𝑖, 𝜎):
• Update 𝜎 by re-randomizing every variable that appears in the clause 𝐶3
• Let 𝐶3! , 𝐶3" , … 𝐶3#$! be the clauses that share variables with 𝐶3
• For 𝑗 = 1,… , 𝑑 + 1:
• If 𝐶3% is violated:
• 𝜎 ←Fix(𝜑, 𝑖6 , 𝜎)

• Return 𝜎

Fixing
set 𝑖!

Trying to fix
the 𝑗’th childAll done

with this
level.

After 𝑇 re-randomizations,

I give up. I’ve
got 𝜎

What needs to change?
• FindSat(𝜑 = 𝐶) ∧ 𝐶4 ∧ ⋯∧ 𝐶5):
• Choose a random assignment 𝜎 for each of the variables that appear in 𝜑
• For each clause 𝐶3 in 𝜑 that is not satisfied:
• 𝜎 ← Fix(𝜑, 𝑖, 𝜎)

• Return 𝜎

• Fix(𝜑, 𝑖, 𝜎):
• Update 𝜎 by re-randomizing every variable that appears in the clause 𝐶3
• Let 𝐶3! , 𝐶3" , … 𝐶3#$! be the clauses that share variables with 𝐶3
• For 𝑗 = 1,… , 𝑑 + 1:
• If 𝐶3% is violated:
• 𝜎 ←Fix(𝜑, 𝑖6 , 𝜎)

• Return 𝜎

Fixing
set 𝑖!

Trying to fix
the 𝑗’th childAll done

with this
level.

After 𝑇 re-randomizations,

I give up. I’ve
got 𝜎

Our algorithm?
• FindSat(𝑆), 𝑆4, … , 𝑆5):
• Choose a random coloring 𝜎 for each of numbers
• For each 𝑆3 that is monochromatic:
• 𝜎 ← Fix(𝑖, 𝜎)

• Return 𝜎

• Fix(𝑖, 𝜎):
• Update 𝜎 by re-randomizing every number in 𝑆3
• Let 𝑆3! , 𝑆3" , … 𝑆3#$! be the sets that intersect 𝑆3
• For 𝑗 = 1,… , 𝑑 + 1:
• If 𝑆3% is monochromatic:
• 𝜎 ←Fix(𝑖6 , 𝜎)

• Return 𝜎

Fixing set
𝑖!

Trying to fix
the 𝑗’th childAll done

with this
level.

After 𝑇 re-randomizations,

I give up. I’ve
got 𝜎

To do the proof
• We need to count the number of random bits that go in in the first 𝑇

re-randomizations.
• We need to count the number of bits of print statements that come

out in the first 𝑇 re-randomizations.
• We need to argue that we can recover the random bits that go in

from the print statements that come out.

Algorithm

Random bits

Print statements

Formula 𝜑 Assignment 𝜎

To do the proof
• We need to count the number of random bits that go in in the first 𝑇

re-randomizations.
• We need to count the number of bits of print statements that come

out in the first 𝑇 re-randomizations.
• We need to argue that we can recover the random bits that go in

from the print statements that come out.

Algorithm

Random bits

Print statements

Formula 𝜑 Assignment 𝜎

Whoops! This
doesn’t hold!!

Recovering the random bits
example

• The print statements allow us to reconstruct the recursion tree.
• Then…

1 2 3 4 5 6 n…
Say we know the coloring AFTER we re-randomized to fix the j’th child.
(We know the final assignment since it was printed out, and we’re working backwards.)

Recovering the random bits
example

• The print statements allow us to reconstruct the recursion tree.
• Then…

1 2 3 4 5 6 n…

Trying to fix
the 𝑗’th child

Say we know the coloring AFTER we re-randomized to fix the j’th child.
(We know the final assignment since it was printed out, and we’re working backwards.)

Recovering the random bits
example

• The print statements allow us to reconstruct the recursion tree.
• Then…

1 2 3 4 5 6 n…

1 2 3 4 5 6 n…

Trying to fix
the 𝑗’th child

Say we know the coloring AFTER we re-randomized to fix the j’th child.
(We know the final assignment since it was printed out, and we’re working backwards.)

Recovering the random bits
example

• The print statements allow us to reconstruct the recursion tree.
• Then…

1 2 3 4 5 6 n…

1 2 3 4 5 6 n…

Trying to fix
the 𝑗’th child

Since I know
the recursion

tree, I know
that at this

point “the 𝑗’th
child” means 𝑆$

Say we know the coloring AFTER we re-randomized to fix the j’th child.
(We know the final assignment since it was printed out, and we’re working backwards.)

𝑆.

Recovering the random bits
example

• The print statements allow us to reconstruct the recursion tree.
• Then…

1 2 3 4 5 6 n…

1 2 3 4 5 6 n…

Trying to fix
the 𝑗’th child

Since I know
the recursion

tree, I know
that at this

point “the 𝑗’th
child” means 𝑆$

Say we know the coloring AFTER we re-randomized to fix the j’th child.
(We know the final assignment since it was printed out, and we’re working backwards.)

𝑆.

These must have been all blue or
all red, but we don’t know which.

Our algorithm
• FindSat(𝑆), 𝑆4, … , 𝑆5):
• Choose a random coloring 𝜎 for each of numbers
• For each 𝑆3 that is monochromatic:
• 𝜎 ← Fix(𝑖, 𝜎)

• Return 𝜎

• Fix(𝑖, 𝜎):
• Update 𝜎 by re-randomizing every number in 𝑆3
• Let 𝑆3! , 𝑆3" , … 𝑆3#$! be the sets that intersect 𝑆3
• For 𝑗 = 1,… , 𝑑 + 1:
• If 𝑆3% is monochromatic:
• 𝜎 ←Fix(𝑖6 , 𝜎)

• Return 𝜎

Fixing set 𝑖!

Trying to fix
the 𝑗’th child

All done
with this

level.
After 𝑇 re-randomizations,

I give up. I’ve
got 𝜎

…because it
was all red!
(or blue, as

appropriate)

Recovering the random bits
example

• The print statements allow us to reconstruct the recursion tree.
• Then…

1 2 3 4 5 6 n…

1 2 3 4 5 6 n…

Trying to fix
the 𝑗’th child

Since I know
the recursion

tree, I know
that at this

point “the 𝑗’th
child” means 𝑆$

Say we know the coloring AFTER we re-randomized to fix the j’th child.
(We know the final assignment since it was printed out, and we’re working backwards.)

𝑆.
…because it
was all red!

Recovering the random bits
example

• The print statements allow us to reconstruct the recursion tree.
• Then…

1 2 3 4 5 6 n…

1 2 3 4 5 6 n…

Trying to fix
the 𝑗’th child

Since I know
the recursion

tree, I know
that at this

point “the 𝑗’th
child” means 𝑆$

Say we know the coloring AFTER we re-randomized to fix the j’th child.
(We know the final assignment since it was printed out, and we’re working backwards.)

𝑆.
…because it
was all red!

Now we know what this assignment was,
so we can keep working backwards!

To do the proof
• We need to count the number of random bits that go in in the first 𝑇

re-randomizations.
• We need to count the number of bits of print statements that come

out in the first 𝑇 re-randomizations.
• We need to argue that we can recover the random bits that go in

from the print statements that come out.

Algorithm

Random bits

Print statements

Formula 𝜑 Assignment 𝜎

Our algorithm
• FindSat(𝑆), 𝑆4, … , 𝑆5):
• Choose a random coloring 𝜎 for each of numbers
• For each 𝑆3 that is monochromatic:
• 𝜎 ← Fix(𝑖, 𝜎)

• Return 𝜎

• Fix(𝑖, 𝜎):
• Update 𝜎 by re-randomizing every number in 𝑆3
• Let 𝑆3! , 𝑆3" , … 𝑆3#$! be the sets that intersect 𝑆3
• For 𝑗 = 1,… , 𝑑 + 1:
• If 𝑆3% is monochromatic:
• 𝜎 ←Fix(𝑖6 , 𝜎)

• Return 𝜎

Fixing
set 𝑖!

Trying to fix
the 𝑗’th child

All done
with this

level.
After 𝑇 re-randomizations,

I give up. I’ve
got 𝜎

…because it
was all red!
(or blue, as

appropriate)

Random bits in:

Our algorithm
• FindSat(𝑆), 𝑆4, … , 𝑆5):
• Choose a random coloring 𝜎 for each of numbers
• For each 𝑆3 that is monochromatic:
• 𝜎 ← Fix(𝑖, 𝜎)

• Return 𝜎

• Fix(𝑖, 𝜎):
• Update 𝜎 by re-randomizing every number in 𝑆3
• Let 𝑆3! , 𝑆3" , … 𝑆3#$! be the sets that intersect 𝑆3
• For 𝑗 = 1,… , 𝑑 + 1:
• If 𝑆3% is monochromatic:
• 𝜎 ←Fix(𝑖6 , 𝜎)

• Return 𝜎

Trying to fix
the 𝑗’th child

All done
with this

level.
After 𝑇 re-randomizations,

I give up. I’ve
got 𝜎

…because it
was all red!
(or blue, as

appropriate)

Bits out:

Also
“all
done”

Fixing
set 𝑖!

Win if random bits in ≫ bits out
aka, then we’d get a contradiction and conclude that there must be < 𝑇
re-randomizations.

Random bits in:

Bits out:

Win if random bits in ≫ bits out
aka, then we’d get a contradiction and conclude that there must be < 𝑇
re-randomizations.

Random bits in:

Bits out:

Want:

Win if random bits in ≫ bits out
aka, then we’d get a contradiction and conclude that there must be < 𝑇
re-randomizations.

Want:

Win if random bits in ≫ bits out
aka, then we’d get a contradiction and conclude that there must be < 𝑇
re-randomizations.

Want:

Aka:

Win if random bits in ≫ bits out
aka, then we’d get a contradiction and conclude that there must be < 𝑇
re-randomizations.

Want:

Aka:

What happens if there are 𝑡 > 2 colors?

Our algorithm
• FindSat(𝑆), 𝑆4, … , 𝑆5):
• Choose a random coloring 𝜎 for each of numbers
• For each 𝑆3 that is monochromatic:
• 𝜎 ← Fix(𝑖, 𝜎)

• Return 𝜎

• Fix(𝑖, 𝜎):
• Update 𝜎 by re-randomizing every number in 𝑆3
• Let 𝑆3! , 𝑆3" , … 𝑆3#$! be the sets that intersect 𝑆3
• For 𝑗 = 1,… , 𝑑 + 1:
• If 𝑆3% is monochromatic:
• 𝜎 ←Fix(𝑖6 , 𝜎)

• Return 𝜎

Trying to fix
the 𝑗’th child

All done
with this

level.
After 𝑇 re-randomizations,

I give up. I’ve
got 𝜎

…because it was all red!
(or blue, or purple, or….

as appropriate)

Fixing
set 𝑖!

Recovering the random bits
example

• The print statements allow us to reconstruct the recursion tree.
• Then…

1 2 3 4 5 6 n…

1 2 3 4 5 6 n…

Trying to fix
the 𝑗’th child

Since I know
the recursion

tree, I know
that at this

point “the 𝑗’th
child” means 𝑆$

Say we know the coloring AFTER we re-randomized to fix the j’th child.
(We know the final assignment since it was printed out, and we’re working backwards.)

𝑆.
…because it

was all green!

Now we know what this assignment was,
so we can keep working backwards!

To do the proof
• We need to count the number of random bits that go in in the first 𝑇

re-randomizations.
• We need to count the number of bits of print statements that come

out in the first 𝑇 re-randomizations.
• We need to argue that we can recover the random bits that go in

from the print statements that come out.

Algorithm

Random bits

Print statements

Formula 𝜑 Assignment 𝜎

Our algorithm
• FindSat(𝑆), 𝑆4, … , 𝑆5):
• Choose a random coloring 𝜎 for each of numbers
• For each 𝑆3 that is monochromatic:
• 𝜎 ← Fix(𝑖, 𝜎)

• Return 𝜎

• Fix(𝑖, 𝜎):
• Update 𝜎 by re-randomizing every number in 𝑆3
• Let 𝑆3! , 𝑆3" , … 𝑆3#$! be the sets that intersect 𝑆3
• For 𝑗 = 1,… , 𝑑 + 1:
• If 𝑆3% is monochromatic:
• 𝜎 ←Fix(𝑖6 , 𝜎)

• Return 𝜎

Trying to fix
the 𝑗’th child

All done
with this

level.
After 𝑇 re-randomizations,

I give up. I’ve
got 𝜎

…because it was all red!
(or blue, or purple, or….

as appropriate)

Random bits in:

⋅ log(𝑡)

𝑘 ⋅ log 𝑡 bits
per re-
randomization.

Fixing
set 𝑖!

Our algorithm
• FindSat(𝑆), 𝑆4, … , 𝑆5):
• Choose a random coloring 𝜎 for each of numbers
• For each 𝑆3 that is monochromatic:
• 𝜎 ← Fix(𝑖, 𝜎)

• Return 𝜎

• Fix(𝑖, 𝜎):
• Update 𝜎 by re-randomizing every number in 𝑆3
• Let 𝑆3! , 𝑆3" , … 𝑆3#$! be the sets that intersect 𝑆3
• For 𝑗 = 1,… , 𝑑 + 1:
• If 𝑆3% is monochromatic:
• 𝜎 ←Fix(𝑖6 , 𝜎)

• Return 𝜎

Trying to fix
the 𝑗’th child

All done
with this

level.
After 𝑇 re-randomizations,

I give up. I’ve
got 𝜎

Bits out:

Also
“all
done”

log(t)

…because it was all red!
(or blue, or purple, or….

as appropriate)

Fixing
set 𝑖!

Win if random bits in ≫ bits out
aka, then we’d get a contradiction and conclude that there must be < 𝑇
re-randomizations.

Random bits in:

Bits out:
log(t)

log(t)

Win if random bits in ≫ bits out
aka, then we’d get a contradiction and conclude that there must be < 𝑇
re-randomizations.

Random bits in:

Bits out:

Want:

log(t)

log(t)

log(t)
log(t)

Win if random bits in ≫ bits out
aka, then we’d get a contradiction and conclude that there must be < 𝑇
re-randomizations.

Want:
log(t)

log(t)

Win if random bits in ≫ bits out
aka, then we’d get a contradiction and conclude that there must be < 𝑇
re-randomizations.

Want:
log(t)

log(t)

Aka:
log(t)

log(t)

Win if random bits in ≫ bits out
aka, then we’d get a contradiction and conclude that there must be < 𝑇
re-randomizations.

Want:
log(t)

log(t)

Aka:
log(t)

log(t)

Conclusion

As long as 𝑘 ≥ /01 "#$
/01 2

+ 10000, we can find a good coloring with

poly(𝑚) re-randomizations!

How does this compare to the general
constructive LLL in the lecture notes?

How does this compare to the general
constructive LLL in the lecture notes?

Same thing!

How does this compare to the general
constructive LLL in the lecture notes?

How does this compare to the general
constructive LLL in the lecture notes?

How does this compare to the general
constructive LLL in the lecture notes?

Same thing!

Conclusions

• As long as 𝑘 ≥ /01 "#$
/01 2

+ 10000, we can find a good coloring with
poly(𝑚) re-randomizations!

• You now have some idea of how you might adapt this proof to deal
with other examples (aka, ones with Pr 𝐴' ≤ 𝑝 for a general 𝑝)….

• is a very cute idea.Algorithm

Random bits

Print statements

Formula 𝜑 Assignment 𝜎
(This method of proof is called
“entropy compression”)

