Class 13

Markov Chains |



Announcements

e HW6 due tomorrow!

« HW7 will be out next week, it’s not due until the week after
Thanksgiving.

* Did anyone leave a pair of headphones in my office?



Recap
(Time homogeneous, finite) Markov Chains!

Memorylessness: Pr| X; = a | Xy, ..., X;—1] = Pr[ X; = a | X(_{]
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Recap
Randomized algorithm for 2SAT!

e Algorithm:

* While not done:
* Find an unsatisfied clause, flip one of the variables at random.

* Analysis: This Markov chain hitsa in no more than 100n? steps whp:
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Questions?



Ql

* Xy = A with probability 1.

+ Q1.1: Pr[ X, = B]?

*Q1.2: Pr[ X, = B ]?

* Q1.3: Pr[ XlO =B ]?
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* Q2.1. What expression do the r; satisfy?

* Q2.2. Sanity-check: prove thatr; = f; + ;.1 where f; = 2f;_1 + 3
and f, = 1.

¢ Q2.3. 1, = 29



In the mini-lectures

* We saw one way to analyze a chain that looked like this:
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* Whp, it took O(n?) steps to reach n.




Today

* We will see another way to use the transition matrix to analyze
(certain nice) Markov chains.

° ’ . . . /‘)é
We'll analyze a Markov chain that looks like this: T o Q*@\Q
 What should happen if the Markov — /:) (@ g \\
chain runs for long enough? E% laboeled 2
* What’s your intuition about how &@ /
long “long enough” is? -



Let’s do this first group work together.

* Transition matrix? v ’
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*Pr[X, = 2|X, = 0]fort=1, 2, ..., 100?

* Ast — oo, what do you think this prob. should go to?



Next group work!
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* Use this to find a nicer way of computing Pr[ X, = 2| X, = 0]
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A nicer way of computing
PriX;, = 2|Xy= 0]
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Aside: Spectral analysis

e Say that a transition matrix P is symmetric.
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e Say that a transition matrix P is symmetric.
 Write P = VAV™ where V is Hermitian and A is
diagonal with real values on the diagonal.
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e Say that a transition matrix P is symmetric.
 Write P = VAV™ where V is Hermitian and A is
diagonal with real values on the diagonal.

Aside: Spectral analysis

« Pt = VA'V*

* What can we say about Pr| X, =j | X, = i] = elTPtej?



Back to group work!

Do the same thing for a large cycle.

* We'll do this somewhat synchronously since the math is a bit gross.



Part 1: Decomposing the adjacency matrix
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Part 2: Pr[X; = 0 | X, = O]
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Part 3: What happens as t gets big?



Part 3: What happens as t gets big?
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Part 4: How big does t need to be?



Part 4: How big does t need to be?



Take-aways

* If we can diagonalize the transition matrix, it can make analyzing a
Markov chain easier.

* This is called “spectral analysis.”

* If the second eigenvalue of a (symmetric) transition matrix is bounded
away from 1, then the Markov chain “mixes” quickly.
 We'll see what it means to “mix quickly” more formally next week.



