
Class 13
Markov Chains I



Announcements

• HW6 due tomorrow!
• HW7 will be out next week, it’s not due un8l the week a"er

Thanksgiving.
• Did anyone leave a pair of headphones in my office?



Recap
(Time homogeneous, finite) Markov Chains!
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Memorylessness: Pr 𝑋! = 𝑎 𝑋", … , 𝑋!#$] = Pr[ 𝑋! = 𝑎 𝑋!#$



Recap
Randomized algorithm for 2SAT!

• Algorithm: 
• While not done:
• Find an unsatisfied clause, flip one of the variables at random.

• Analysis: This Markov chain hits 𝑛 in no more than 100𝑛% steps whp:

e.g., 𝜑 = 𝑥$ ∨ 𝑥% ∧ 𝑥$ ∨ 𝑥& ∧ ⋯∧ (𝑥' ∨ 𝑥()
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Questions?



Q1

• 𝑋" = 𝐴 with probability 1.

• Q1.1: Pr[ 𝑋$ = 𝐵 ]?

• Q1.2: Pr[ 𝑋% = 𝐵 ]?

• Q1.3: Pr[ 𝑋$" = 𝐵 ]?
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Q2

• 𝑟) = 𝐸[min
!

𝑡: 𝑍* = 𝑛 | 𝑍" = 𝑖]

• Q2.1.  What expression do the 𝑟) sa8sfy?

• Q2.2.  Sanity-check: prove that 𝑟) = 𝑓) + 𝑟)+$ where 𝑓) = 2𝑓)#$ + 3
and 𝑓" = 1.

• Q2.3.  𝑟" = 2,(*)
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In the mini-lectures

• We saw one way to analyze a chain that looked like this:

• Whp, it took Θ(𝑛%) steps to reach n.
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Today

• We will see another way to use the transi8on matrix to analyze 
(certain nice) Markov chains.

• We’ll analyze a Markov chain that looks like this:

• What should happen if the Markov 
chain runs for long enough?

• What’s your intuition about how 
long “long enough” is?



Let’s do this first group work together.

• Transition matrix?

• Pr 𝑋! = 2 𝑋" = 0 ] for t=1, 2, …, 100?

• As 𝑡 → ∞, what do you think this prob. should go to?  



Next group work!

• Show that:

• Use this to find a nicer way of computing Pr 𝑋! = 2 𝑋" = 0 ]
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Whoops, everything on this slide 
should be divided by 3.
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Back to group work!  
Do the same thing for a large cycle.

• We’ll do this somewhat synchronously since the math is a bit gross.



Part 1: Decomposing the adjacency matrix
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Part 2: Pr[𝑋( = 0 |𝑋) = 0]
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Part 3: What happens as 𝑡 gets big?
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Part 4: How big does 𝑡 need to be?
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Take-aways

• If we can diagonalize the transition matrix, it can make analyzing a 
Markov chain easier.
• This is called “spectral analysis.”

• If the second eigenvalue of a (symmetric) transition matrix is bounded 
away from 1, then the Markov chain “mixes” quickly.  
• We’ll see what it means to “mix quickly” more formally next week.


