
CS265, Fall 2022

Class 13: Agenda and Questions

1 Questions/Lecture Recap

Any questions from the minilectures and/or the quiz? (Markov chains and a randomized
algorithm for 2SAT)

2 Spectral Analysis of Markov Chains

Consider the Markov chain given by:

Here’s a quick warm-up (we may do this together):

Group Work

1. What is the transition matrix for this Markov chain?

2. Suppose that you start in state 0. What is the probability that you are in state 2
after one step? Two steps? Three steps? 100 steps? (Don’t actually compute this,
just say how you would).

3. As t→∞, what do you think is limt→∞ Pr[Xt = 2|X0 = 0]?

Group Work: Solutions

1. P =


1/3 1/3 0 1/3
1/3 1/3 1/3 0
0 1/3 1/3 1/3

1/3 0 1/3 1/3

 is the transition matrix.
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2. After 1 step, the probability is 0. After 2 steps, it’s 2/9. After 3 steps, it’s 6/27.
To figure it out after 100 steps, we should compute e0 ·P 100 · e2. I don’t want to do
this by hand!

3. It should be 1/4. Intuitively, if we walk for long enough there’s no reason we should
prefer being at one state over any other. (Next week we’ll see that this intuition
can be formalized as “the stationary distribution is uniform.”)

Next, we’ll see how we can use linear algebra to help us out in computing things like
Pr[Xt = 2|X0 = 0] for general t. We’ll focus on this particular example, but as we go, keep
in mind what you think the general principle should be.

Group Work

1. Let

F =
1

2


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i


where i =

√
−1. (You may recognize F as the 4 × 4 discrete Fourier matrix, so

Fjk = 1
2
e−2πijk/4.) Notice that F is a Hermitian matrix, which means that F ∗F =

FF ∗ = I, where F ∗ denotes the Hermitian conjugate (e.g., take the transpose and
change all of the i’s to −i’s).
Convince yourself that

P = F ·


1

1/3
−1/3

1/3

 · F ∗.
Hint: Check that the columns of F are eigenvectors for P .

Note: If your linear algebra is rusty and you trust me, just remind yourself what
an eigenvector actually is. The main point here is that you should understand this
so that you can use it in the next part.

2. Given the previous part, for the Markov chain defined at the top, how would you
figure out the probability of being in state 2 at time 100, if you started at state
0? (This time, use the previous part to get an easier-to-compute-with expression.)
Come up with a statement like

Pr[Xt = 2|X0 = 0] =
1

4
±O( )
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where the thing in the O() term depends on t. What is the best bound you can
get?

Group Work: Solutions

1. Following the hint, let’s check that the columns of F are eigenvalues for P . We
have:

• P · (1, 1, 1, 1)T = 1 · (1, 1, 1, 1)T , so the first column is an eigenvector with
eigenvalue 1.

• P · (1,−i,−1, i)T =


1/3− i/3 + i/3

1/3− i/3 +−1/3
−i/3− 1/3 + i/3
1/3− 1/3 + i/3

 = 1
3


1
−i
−1
i

 so the second column is

an eigenvector with eigenvalue 1/3.

• Similarly we can check that the third column has eigenvalue −1/3 and the
fourth column has eigenvector 1/3.

If we remember our linear algebra, this is enough to conclude that what’s written
is the eigendecomposition for P .

If we don’t remember our linear algebra, here’s one way we could conclude that.
(Basically we’ll just re-derive why we care about the eigendecomposition). Let
D = diag(1, 1/3,−1/3, 1/3) be the diagonal matrix in the middle. We want to
show that P = FDF ∗. It’s enough to show that Pv = FDF ∗v for all vectors v;
and in particular it’s enough to show it for four linearly independent vectors v.
Let’s choose the vectors v to be the columns of F ; say vi is the i’th column. Since
the vi are orthogonal, we have F ∗vi = ei. Thus, DF ∗vi = λivi, where λi is the i’th
entry on the diagonal of D. Then, FDF ∗vi = λiFei = λivi. But we just established
above that Pvi = λivi also for all i. So the two matrices are the same.

2. Now that we know that P = FDF ∗, we can write

eT0 P
100e2 = eT0 (FDF ∗)100e2 = eT0 FD

100F ∗e2.

Fortunately, D100 is really easy to compute! Just raise everything on the diagonal
to the power of 100. More generally, after t steps, we can write:

eT0 FD
tF ∗e2 =

1

4
(1, 1, 1, 1)


1

3−t

3−t

3−t




1
−1
1
−1

 =
1

4
(1 +O(3−t)).

Before we move on to larger cycles, let’s take a minute to reflect on what just went on.
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[A bit of lecture about spectral analysis. The point is that if we have a symmetric Markov
chain, we can always write the transition matrix as P = V DV ∗ for a Hermitian matrix V
and a diagonal matrix D with real values on the diagonals. Then we can write P t = V DtV ∗,
and as long as the second-largest eigenvalue is strictly less than 1, eventually Dt will look like
diag(1, tiny, tiny, . . . , tiny). This means that we can compute transition probabilities after t
steps up to very small error terms.]

In this next part, you’ll generalize what you saw above to larger cycles.

Group Work

1. Consider the analogous Markov chain to the 4-state one that you saw before, except
that it has n states. That is, it looks like this:
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Let P ∈ Rn×n be the transition matrix for this Markov chain. Here is a fact:

P = FnDF
∗
n ,

where D is a diagonal matrix whose j’th entry is

Dj,j =
1 + 2 cos(2πj/n)

3
,

where j = 0, . . . , n − 1. (Importantly, j is zero-indexed here!) Above, Fn is the
n× n DFT, so

(Fn)j,k =
1√
n
e−2πijk/n.

(There is no question here, just acknowledge it.)
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Note: As before, you can work this out for yourself if you feel like. As a hint,
check that the columns of F are eigenvectors of P with the appropriate eigenvalues.
You may find it helpful that 2 cos(x) = ex + e−x.

2. Come up with an expression for Pr[Xt = 0|X0 = 0]. You should get a kind of nasty
sum involving some cosines, but it shouldn’t be too nasty.

3. Convince yourself that as t→∞, Pr[Xt = 0|X0 = 0]→ 1/n.

4. Try to think about how fast this convergence is. That is, how large does t have to
be before Pr[Xt = 0|X0 = 0] = 1+o(1)

n
? (Don’t try to come up with a formal proof,

just some back-of-the-envelope calculations).

Also, how does this compare to what we saw in the mini-lectures about the walk
on the line?

Hint: You may find the Taylor expansion cos(x) = 1 − x2

2
+ x4

24
− · · · of cos(x)

about zero helpful. In particular, when x is small, cos(x) ≈ 1 − x2

2
. You may also

want to use the approximation 1− x ≈ e−x for small x liberally.

Group Work: Solutions

1. Noted!

2. This probability is 1
n
~1TDt~1, since ~1/

√
n = e0Fn and Pr[Xt = 0|X0 = 0] = eT0 P

te0 =
eT0 FnD

tF ∗ne0. Writing that out, it’s

1

n

n−1∑
j=0

Dt
j,j =

1

n

n−1∑
j=0

(
1 + 2 cos(2πj/n)

3

)t
.

3. When j = 0, D0,0 = (1 + 2 cos(0))/3 = 1, so Dt
0,0 = 1t = 1 for any t. On the other

hand, when j > 0, Dj,j = (1 + 2 cos(2πj/n))/3 < 1, which means that as t → ∞,
Dt
j,j → 0. So only the j = 0 term survives in the expression from the previous part,

and we get
1

n
(1 + stuff that → 0)→ 1

n
.

4. Based on our intuition with the line, maybe we’d think it should be about n2 steps.
That’s because we think it will take us about n2 steps to get all the way around
the circle; and once we get all the way around the circle, surely we’re close to the
limiting (uniform) distribution. This is pretty hand-wavey, but here’s the way to
make it rigorous.

Let’s think about what happens to Dt
j,j as t gets large. Following the hint, for small
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j (say, j < n/10), we have:

Dt
j,j =

(
1 + 2 cos(2πj/n)

3

)t
≈
(
1 + 2(1− (2πj/n)2/2)

)t
=

(
1− (2πj/n)2

3

)t
≈ exp

(
−t(2πj)2

3n2

)
= exp(−Ω(tj2/n2)).

For j ∈ [n/10, n/2− n/10] (say), we have | cos(2πj/n)| ≤ cos(2π/10) ≈ 0.8, so(
1 + 2 cos(2πj/n)

3

)t
. (1 + 1.6)/3 ≈ 0.86t = exp(−Ω(t)).

(The only point here is that 0.86 is some constant that’s less than 1 and doesn’t
depend on n). So no matter what j is, we have

|Dj,j|t ≤ exp(−Ctj2/n2)

for some small enough constant C. Let’s set t = C ′n2 for some large enough
constant C ′, and return to our nasty expression. We have

1

n

n−1∑
j=0

Dt
j,j =

1

n
· 1 +

1

n

n−1∑
j=1

Dt
j,j

=
1

n
± 1

n

n∑
j=1

exp(−C · C ′ · j2)

=
1

n
(1± 0.01)

where we are assuming that we’ve picked our constant C ′ so that it’s large enough
that the sum

∑n
j=1 exp(−CC ′j2) ≤ 0.01. (If C · C ′ ≥ 10, this should be fine, since∑∞

j=1 exp(−10j2) is much smaller than 0.01).

This was pretty fast and loose with the ≈’s, but it gives some intuition for why we
should be able to take t ≈ n2.

At the end of the day, we conclude that after about n2 steps (up to some leading
constant), there’s a very close to 1/n chance that we’re back at 0. (The same
analysis works to show that there’s also very close to a 1/n chance that we’re at,
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say, n/2). One way to say this is that after about n2 steps, Xt is basically uniform
on the cycle.

Next week we’ll see another method, called coupling, which can also help us bound
how fast a Markov chain “mixes.” (Aka, gets close to the distribution it should be
getting close to).
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