
CS265/CME309: Randomized Algorithms and
Probabilistic Analysis

Lecture #13: Introduction to Markov Chains, and a
Randomized Algorithms for 2-SAT

Gregory Valiant*, updated by Mary Wootters

November 9, 2022

1 Markov Chains
The formal development of the theory of Markov chains was initially motivated by Markov’s ob-
servation that sequences of dependent events often exhibited similar sorts of concentration in their
long-term behavior, as sequences of independent events. Specifically, Markov examined the statis-
tics of word frequencies (and vowel/consonant frequencies) in Pushkin’s novel Eugene Onegin, and
found that, for example, the statistics of these frequencies in different parts of the novel were all
very similar. This would be expected if words were chosen independently; however, language has
extremely strong dependencies—the next word is very dependent on the previous words. How can
we model such dependencies, and how can we understand the long-term behavior of these processes?

Definition 1. A sequence of random variables indexed by the integers, X0, X1, X2, . . . is a Markov
Chain or Markov process if for all t, the distribution of Xt conditioned on all of X0, . . . , Xt−1 is
equal to the distribution of Xt conditioned on only Xt−1. Namely, for any sequence of values ci,

Pr[Xt = ct|X0 = c0, X1 = x1, . . . , Xt−1 = ct−1] = Pr[Xt = ct|Xt−1 = ct−1].

This property is often referred to either as the “Markov property” or the “memoryless property”,
since it implies that, to know the distribution of future random variables, all you need to know is the
current state of the current random variable—there is no need to remember the history of previous
random variables.

While it is certainly possible to have Markov chains for which Pr[Xt = ct|Xt−1 = ct−1] is a
function of t and the values ct and ct−1, in many cases this probability is independent of t, in which
case we refer to the chain as being time homogeneous.

Definition 2. A Markov chain X0, X1, . . . is time homogeneous if, for all values a, b and all times
t ≥ 0,

Pr[Xt = a|Xt−1 = b] = Pb→a,

*©2019, Gregory Valiant. Not to be sold, published, or distributed without the authors’ consent.

1

for some probability Pb→a that does not depend on t.

For time homogeneous Markov chains, it is convenient to think of these conditional probabilities
as forming a transition matrix, P , whose rows and columns are indexed by the possible values that
the variables {Xt} can take, and entry Pb,a = Pr[Xt = a|Xt−1 = b]. This matrix representation is
especially convenient, because evolving the chain by one timestep corresponds to multiplication by
P . Supposing the value of Xt is drawn according to a distribution, we can represent this distribution
as a (row) vector v, whose coordinates are indexed by the same values as matrix P . The vector-
matrix product vP corresponds to the distribution of Xt+1, given that Xt was selected according to
the distribution represented by v. Hence, given that X0 = c0 the distribution of Xt|X0 = c0 is given
by vP t, where v is the vector with 1 in the coordinate corresponding to c0.

Example 3. Consider a Markov chain that represents my work habits:

Suppose that time proceeds in 15-minute chunks. After I work for 15 minutes, there’s some probabiity
(30%) that I keep working, but it’s more likely (50%) that I’ll just start following links on Wikipedia,
or perhaps (20%) I’ll get bored and go for a walk. Once following links on Wikipedia, probably
(80%) I’ll keep on doing that, and the only thing that will tear my attention away (20%) is going for
a walk. Once I’ve gone for a walk and cleared my head, with 100% probability I’ll sit down and get
back to work.

The matrix associated to this Markov chain is:

M =

0.3 0.2 0.5
1 0 0
0 0.2 0.8


Here, the first row/column corresponds to “Working,” the second to “Walking,” and the third to
“Wikipedia.” Notice that the rows of this matrix are all probability distributions.

If I start out working (eg, with probability 1 I am working), that corresponds to the vector
v(0) = (1, 0, 0). We can get the distribution on my activities after one step by computing

v(1) = v(0) ·M = (0.3, 0.2, 0.5).

Repeating this, we can get the distribution after 20 steps, and find that it’s about

v(20) = v(0) ·M20 ≈ (0.238, 0.167, 0.595).

That is, if you check in on me after 20 timesteps, there’s about a 60% chance that I’m going to be
following links on Wikipedia instead of working on this lecture.

2

2 Randomized 2-SAT
As many of you have seen in previous classes, there is an efficient deterministic algorithm for 2-SAT.
Here, we will describe a very intuitive efficient randomized algorithm, which resembles the random-
ized algorithms we discussed in the constructive Lovasz Local Lemma, but is slightly different. The
analysis of the algorithm will leverage the analysis of a Markov chain.

Algorithm 4. RANDOMIZED 2-SAT ALGORITHM
Input: 2-SAT formula over n variables, x1, . . . , xn.

• Let A0 denote some assignment to the variables (e.g. all set to
false).

• For t = 1 to cn2 (for some parameter c > 1):

– If there exists an unsatisfied clause, arbitrarily (e.g. the
lowest index such clause) select one. Let xi, xj denote the two
variables in this clause.

– With probability 1/2, let At be identical to At−1 except with
the assignment to variable i flipped, and with the remaining
probability 1/2 let At be identical to At−1 except with the
assignment to variable j flipped.

• If no satisfying assignment has been found within cn2 flips, then
return ‘‘The formula is not satisfiable’’.

Theorem 1. If the formula is satisfiable, the above algorithm will return a satisfying assignment
with probability at least 1− 1

2c/2
. If the formula is not satisfiable, the algorithm will (with probability

1) return “The formula is not satisfiable”.

If the formula is not satisfiable, the algorithm will never return a satisfying assignment. Hence,
for the remainder of our analysis, we will assume the formula is satisfiable, and analyze the proba-
bility that the algorithm fails to find a satisfying assignment. To this end, let S denote a satisfying
assignment (there might be multiple satisfying assignments, in which case let S be any one of them).
Consider the random variables, X0, X1, . . . , where Xi denotes the number of variables whose as-
signment in Ai agrees with the assignment in S. Hence Xi ∈ {0, 1, . . . , n}, and if Xi = n, then
Ai = S and we must have found a satisfying assignment.

Let’s analyze the behavior of the Xi’s. First, note that if At−1 is not a satisfying assignment,
then the clause considered in the tth step of the algorithm must have at least one of the two variables
taking the opposite value from their assignment in S. Hence, with probability at least 1/2, the
algorithm will flip the “right” one, and Xt = Xt−1 + 1, and in the remaining case, Xt = Xt−1 − 1.
Additionally, If At−1 is not a satisfying assignment and Xt−1 = 0, then with probability 1, Xt = 1.

The sequence X0, X1, . . . is not in general a Markov process, because the sequence of values
X0, X1, . . . , Xt−1 contains information about which variables were flipped, and hence the distribu-
tion of Xt conditioned on the entire history might be different than the distribution conditioned on
just Xt−1.

Example 5. To see an example where this process X0, X1, . . . is not Markovian, see Figure 1.

Our analysis will proceed by considering a related process, Y0, Y1, . . ., defined to satisfy the
following properties:

3

Figure 1: An example where X0, X1, . . . is not a Markov process. Here, the tree shows the possible
outcomes at each step. We assume that the algorithm always selects the first unsatisfied clause to
fix. We also assume for convenience that once there are no more unsatisfied clauses, we just set
Xt+1 ← Xt. (If you don’t like this, you can augment the example by adding more variables and
more clauses so that this doesn’t come up). Thanks to Mingda Qiao for this example!

4

• Y0 = X0, and for all t, Yt ≤ Xt.

• If Yt−1 ∈ {1, . . . , n− 1}, then Pr[Yt = Yt−1 + 1|Yt−1] = 1/2, and Pr[Yt = Yt−1 − 1|Yt−1] =
1/2, and Pr[Yt = 1|Yt−1 = 0] = 1.

Given that we can construct such a sequence of Y s, the expected number of steps until either
Xt = n or we have found a satisfying assignment (other than S) is bounded by the expected time t
before Yt = n. Since Yt is a relatively simple Markov chain, analyzing this expected time will not
be too hard.

To see why the sequence Y0, Y1, . . . can be constructed so as to satisfy the above conditions, note
that when Xt−1 > 0, we have Xt = Xt−1 ± 1, and the probability of being Xt−1 + 1 is at least a
half. This means that there is “probability to spare” to ensure that Yt = Yt−1 + 1 with probability
exactly 1/2. Formally, we can construct such a sequence by defining a joint distribution over the
pairs (Xi, Yi). We will talk more about this sort of thing next week when we discuss couplings,
though for the sake of completeness, consider defining Yt as a function of At−1, Yt−1, and Xt as
follows:

• If Yt−1 = 0, then Yt = 1.

• Otherwise, let pt denote Pr[Xt = Xt−1 + 1|At−1], and note that pt ≥ 1/2.

– Suppose that Xt = Xt−1 − 1. (This happens with probability 1 − pt). In that case, wet
Yt = Yt−1 − 1.

– Suppose taht Xt = Xt−1 + 1. (This happens with probability pt > 1/2). In this case,
with probability (1/2)/pt, we set Yt = Yt−1 + 1, and with probability 1 − (1/2)/pt we
set Yt = Yt−1 − 1.

You can (and should!) check that this definition of Yt satisfies the bulleted properties specified
above.1

Now we can focus on the behavior of the Yi’s instead of the Xi’s. Since we always have Xi ≥ Yi,
if we show that Yt = n with some decent probability, then Xt = n with even better probability. And
if Xt = n, then all of our variables agree with S and we’ll have found the assignment we’re after.
To that end, we state and prove the following lemma about the behavior of the Yi’s:

Lemma 6. Let Y0, Y1, . . . be a Markov chain so that

Pr[Yt = Yt−1 + 1|Yt−1] = Pr[Yt = Yt−1 − 1|Yt−1] = 1/2

when Yt ∈ {1, . . . , n}, and
Pr[Yt = 1|Yt−1 = 0] = 1.

Then for any initial value of i ∈ {0, . . . , n},

E[min(t : Yt = n)|Y0 = i] ≤ E[min(t : Yt = n)|Y0 = 0] = n2.

1One slight subtlety in showing that Yt ≤ Xt: you may be concerned about the case when Yt = 0 and Xt = 1. In
this case, Yt+1 = 1 deterministically, but it might be the case that Xt+1 = 0, which would violate Yt ≤ Xt. Fortunately,
this case never arises! The reason is that by construction, Xt − Yt is always even. (This was missing from an earlier
iteration of these lecture notes; thanks to Arnab Bhattacharyya for pointing this out!)

5

Proof. Letting ri = E[min(t : Yt = n)|Y0 = i], we have that r0 = 1 + r1, since when the chain
starts at value 0, after 1 timestep, the value is 1, and then the expected additional time until it hits n
is simply r1, by the Markov property. Similarly, for i > 0, ri = 1 + 1

2
ri−1 +

1
2
ri+1. Additionally,

rn = 0, by definition. Hence we have n+1 linear equations in n+1 variables, r0, . . . , rn, and hence
there is a unique solution. I now claim that the unique solution has ri = ri+1 + 2i + 1. To see that
this satisfies the equations, note that this certainly satisfies the equation r0 = 1 + r1. For the other
equations, consider plugging this in for ri−1 in the right side of the equation ri = 1+ 1

2
ri−1+

1
2
ri+1 :

This yields 1+ 1
2
(ri+2(i−1)+1)+ 1

2
ri+1 =

1
2
(ri+2i+1+ri+1), and if we replace the 2i+ri+1+1

by ri, then this expression simplifies to ri, showing that ri = ri+1+2i+1 is a solution to the system
of equations, with rn = 0. Hence ri =

∑n−1
j=i (2i+1), and hence ri ≤ r0 = 1+3+5+ . . . = n2.

To finish our proof of Theorem 1, note that by Markov’s inequality, no matter the value of Yt,
with probability at least 1/2, there will be a t′ ≤ t+ 2n2 for which Yt′ = n. Hence, for a satisfiable
formula, the probability that the algorithm fails to find a satisfying formula during the first cn2 steps
is the probability that ALL c/2 blocks of 2n2 steps fail to find a formula, which is at most 1/2c/2.

Note: the stuff below isn’t included in the video lectures and we won’t go over it in class;
it’s just optional reading in case you are curious!

2.1 Extensions to 3-SAT
We can try to apply the natural analog of the randomized 2-SAT algorithm to an instance of 3-
SAT. Suppose we try to analyze it in the same way, and let Xt denote the number of variables
whose assignment differs between the assignment at step t, and the fixed satisfying assignment, S.
Since we are dealing with a 3-SAT formula, we will have that Pr[Xt = Xt−1 + 1] ≥ 1/3, and
Pr[Xt = Xt−1 − 1] ≤ 2/3, instead of the case of 2-SAT where these bounds were 1/2. Now, since
the probability of making progress might only be 1/3, if we start at Xt = 0, (or even Xt = n/2,
corresponding to initializing via a random guess), then the expected time until we reach Xt = n will
be exponential in n, as we would expect given that 3-SAT is NP-hard. We will see techniques for
formalizing this, though the intuition is that we do really expect to be losing ground fast than we
gain ground, and hence if we end up at n, we must have “beaten the odds” a significant number of
times, which will happen only with an inverse exponential probability.

It turns out, however, that a variant of this algorithm due to Schoning [1], does yield the best
know runtime for 3-SAT. That runtime is still exponential, but is at most O(1.334n) improving upon
the previous best of (1.36n). The algorithm is slightly different than the 2SAT algorithm, in that it
frequently re-initializes the assignment.

6

Algorithm 7. SCHONING’S RANDOMIZED 3-SAT ALGORITHM
Input: 3-SAT formula over n variables, x1, . . . , xn.

• Repeat the following:

– Select a uniformly random assignment to the n variables.

– For t = 1 to 3n:

* If there exists an unsatisfied clause, arbitrarily (e.g. the
lowest index such clause) select one, and flip the assignment
to one of the three variables (chosen uniformly at random) in
the offending clause.

The

intuition for the frequent randomized restarting is the following: In the analysis, if we make positive
progress 1/3 of the time, and negative progress 2/3 of the time, then if we are close to a satisfying
solution, S, at some time t, for example if Xt = n − 1, then conditioned on not having reached n
within the next, say, w timesteps, we would expect Xt+w ≈ n+(1

3
− 2

3
)w, and hence we expect to be

even worse than we started. Hence, the algorithm starts by randomly guessing, hopes that the initial
guess is close to a satisfying assignment S, in which case there is a not-too-small probability that
the random procedure might find the satisfying assignment. If, however, after 3n steps, we haven’t
found the satisfying assignment, then the analysis says that we are probably not so close, and hence
it would be better to randomly restart, rather than continuing down the hole that we might be in. The
analysis of this algorithm closely mirrors the 2SAT analysis, and the entire paper [1] is 4 or 5 pages!

References
[1] Uwe Schöning. A probabilistic algorithm for k-sat and constraint satisfaction problems. In

Proceedings of the 40th Annual Symposium on Foundations of Computer Science, FOCS ’99,
1999.

7

