
Class 14
Markov Chains II



Announcements

• No HW at the moment!
• Next week is fall break!
• This Friday is the last day to change to/from CR/NC, and also the last 

day to withdraw.



Recap: More Markov Chains!

• Definitions!
• A chain is irreducible if you can get to anywhere from anywhere else.

• A state is recurrent if you’ll return to it eventually with probability 1.
• Otherwise it is transient.

• A chain is periodic if there’s a state that you can only reach on multiples of c, 
for some integer c > 1.
• Otherwise it is aperiodic.

• Useful fact: any irreducible chain with a self-loop is aperiodic!



Recap: Fundamental Theorem of Markov Chains

• Any irreducible and aperiodic Markov chain over a finite state space 
has a unique stationary distribution π.

• As t gets big, "! → $

• $% = $, aka if "! ∼ $, then "!"# ∼ $

• If you start in state i, the expected amount of time to return is #$!



Tie-in to last time…

• Proposition: If a Markov chain has symmetric transitions, and is 
aperiodic and irreducible, then the stationary distribution is uniform.



Metropolis algorithm and MCMC

• Markov Chain Monte Carlo: 
• Set up a Markov Chain with a particular desired stationary distribution.  
• To sample from that distribution, run the chain for a while!

• Metropolis Algorithm:
• A particular way to set up such a chain.



Questions?
Fundamental Theorem, Metropolis Alg?  Quiz?



Question 1

• Which states are recurrent?
• A,B,C

• Which states are transient?
• D

• Is this chain irreducible?
• No, it’s reducible into {D}, {A,B,C}.

• Is this chain periodic?
• No, it’s aperiodic.
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Question 2

• What is the stationary distribution?
• (3/8, 1/4, 3/8)
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Question 3

• Choose a card uniformly at random.
• Move it to the top of the deck.

• Is the MC symmetric? (No)
• Is it irreducible? (Yes)
• Is it periodic? (No)
• Is the stationary distribution uniform? (Yes)



Today: Gibbs Sampling!

• An MCMC algorithm for multivariate distributions.

• Set-up:
• ! is a joint distribution on random variables ", $

• More generally %!, %", … , %#
• It’s hard to sample from !
• But it’s easy to sample from ! " $ = &) or !($|" = *) for any fixed *, &.



Gibbs Sampling 
(for two variables)

• Say "! , )! = (+, ,)
• Draw +( ∼ $ " ) = ,
• Draw ,( ∼ $()|" = +()
• Set "!"#, )!"# = (+(, ,()



Group Work!
1. Show that the uniform distribution is a stationary distribution.
2. Under what conditions on $ does FToMC hold?
3. What is the take-away in the context of MCMC?
4. How would you use Gibbs sampling to sample random colorings?
5. How would you use Gibbs sampling to sample a uniformly random 7-word

sentence from the distribution of all reasonable such sentences?
6. Any other applications of Gibbs sampling/MCMC that you’ve encountered?

• Say !! , #! = (&, ')
• Draw &" ∼ * ! # = '
• Draw '" ∼ *(#|! = &")
• Set !!#$, #!#$ = (&", '")
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2. Do the conditions hold?

• Aperiodic:

• Irreducible:

• Finite:



2. Do the conditions hold?
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3. Why is this useful?

• If we can easily sample from $ " ) = ,) or $ ) " = + , then we can 
sample ("! , )!).
• As 4 → ∞, this will converge to $, so eventually we can sample from $!
• How long does it take to converge???? 



4. Graph Coloring

• What is the right multivariate generalization?

• How to apply to sampling a random proper coloring?

• Say !! , #! = (&, ')
• Draw &" ∼ * ! # = '
• Draw '" ∼ *(#|! = &")
• Set !!#$, #!#$ = (&", '")



5. Sampling 7-word sentences

• What is the algorithm?  What task do you need to be able to do?



6. Other examples?

• Y’all come from many different areas – have any of you used Gibbs 
sampling or any other MCMC method before?  For what applications?



Another Example: Image Denoising

• Say you get a noisy (black and white, say) image " = (+#, … , ++).
• Each pixel *, is ±1

• Sample an “un-noisy” version ) = ,#, … , ,+ , so that the probability 
of ) is proportional to:

exp(: ∑, +,,, + ; ∑,∼,( ,,,,()



Recap

• The fundamental theorem of Markov chains can be useful!
• But it sure would be more useful if we knew how fast we approached 

the stationary distribution…
• Next time!


