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1 The Fundamental Theorem of Markov Chains
We begin with several definitions that will provide some terminology for discussing the long-term
behavior of a time-homogeneous Markov chain.

Definition 1. A (time homogenous) Markov chain, X0, X1, . . . , is irreducible if, for all pairs of
states, i, j there is a positive probability of eventually getting to state j when starting at state i:∑

t≥0

Pr[Xt = j|X0 = i] > 0.

Given the representation of a Markov chain as a graph, with nodes being the states, and nonzero
probability transitions represented as directed edges, the above definition is equivalent to requiring
that the graph is strongly connected.

For both Markov chains with finite, and infinite state spaces, it is useful to classify states into the
set of states that are transient—meaning the chain will visit them only a finite number of times—and
those that are recurrent—meaning that the chain will visit them an unbounded number of times, if
the chain is run for sufficiently long:

Definition 2. Letting

ri =
∑
t≥1

Pr[Xt = i and for t′ ∈ {1, . . . , t− 1}, Xt′ 6= i|X0 = i]

denote the probability that a Markov chain returns to state i, given that it starts there, we say that
state i is transient if ri < 1, and recurrent if ri = 1.
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In the case that a state i is transient, then the number of times the chain will be in state i, given
that it starts in state i, is given by the geometric random variable with parameter 1−ri, and hence has
expected value 1/(1− ri). For recurrent states, one can also ask what the expected time is between
visits to a given state, namely E[min{t : Xt = i}|X0 = i]. For Markov chains with a finite number
of states, a state is recurrent if and only if this expected time is finite. As the following example
illustrates, for infinite chains, it is possible that a state is recurrent, but the expected time to return is
infinite.

Example 3. (Gambler’s Ruin) Consider the Markov chain X0, . . . where X0 = 0, and Xt = Xt−1±
1, with probability 1/2 of each outcome. First, we claim that state 0 is recurrent. To see this,
recall our analysis of the randomized 2-SAT algorithm from last class. An immediate consequence
of that analysis showed that, given that Xt = i, with probability at least 1/2 there is some t′ ∈
{t, . . . , t + 2n2} such that |Xt′ − i| ≥ n/2. That is, the walk will have wandered at least distance
n/2 from where we started within those 2n2 steps. Hence, whatever the value ofXt, with probability
at least 1/4, we have hit 0 within the next 2X2

t steps. (Here, we have 1/4 instead of 1/2 because of
symmetry: we are equally as likely to wander to zero from Xt as we are to 2Xt, so there’s at least a
1/4’th chance of each happening.)

Hence for every value of Xt, we can name a time t′ = f(t) such that with constant probability
we will have returned to 0 within the next t′ steps, and hence state 0 must be recurrent. (Indeed, the
probability that we don’t return to 0 ever is at most (3/4) · (3/4) · (3/4) · (3/4) · · · · , which is equal
to zero in the limit.)

The expected time until we return to 0, however, turns out to be infinite! We will see a proof of
this next week, in the context of analyzing hitting times.1

Intuitively, this means that if we play a fair betting game (we toss a coin and if its heads, you
win a dollar, otherwise, you lose a dollar), then if you were to play for infinitely long and the person
you were playing with had an infinite amount of money, you are guaranteed to go broke at some
point. However, the expected time you will need to play until this happens is infinite! This example
is often referred2 to as the “Gambler’s Ruin,” since eventually the gambler will go broke. Another
perspective on this is that the gambler is “ruined”, not because they expect to go broke eventually,
but because they expect to spend so much time gambling.

The next definition characterizes when a Markov chain has some periodic behavior:

1Intuitively, this is because we expect it to take about X2
t steps before we either reach 0 or reach 2Xt, and we are

equally likely to hit 0 first as we are to hit 2Xt. So, the expected time to hit 0 from, say, 2i is

1

2
22i +

1

2
· (E[time to hit 0 from 2i+1]).

Repeating this logic, we get
1

2
22i +

1

4
22(i+1) +

1

4
· E[time to hit 0 from 2i+2 ]

and then
1

2
22i +

1

4
22(i+1) +

1

8
22(i+2) + · · ·

and so on. The sum that we end up with (assuming we started with i = 1, say) is
∑

j
22j

2j =
∑

j 2
j , which diverges.

2There are also other, different, examples that are often referred to as “Gambler’s Ruin.” Turns out that there are lots
of ways that gambling can lead to ruin...
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Definition 4. A Markov chain X0, X1, . . . is periodic if there exists a state, i, such that

gcd ({t|Pr[Xt = i|X0 = i] > 0}) 6= 1,

and is aperiodic if no such state exists. (Here “gcd” is short-hand for the “greatest common divi-
sor”.)

Example 5. The “Gambler’s Ruin” Markov chain is periodic, because, for example, you can only
ever return to state 0 at even time-steps: gcd{t|Pr[Xt = 0|X0 = 0] > 0} = 2.

Fact 6. Any irreducible Markov chain that has at least one “self-loop” (ie one state i for which
Pr[Xt = i|Xt−1 = i] > 0, is aperiodic.

Proof. Suppose state i has a self-loop. From any state j, the chain can eventually get to i (by
irreducibility), and use the self-loop any number of times, and then return to j (by irreducibility),
rendering the greatest common divisor of timesteps at which we could have returned to state j to be
1.

Given all these definitions, we can now state the Fundamental Theorem of Markov chains, which
states that finite, irreducible, aperiodic Markov chains have a unique stationary distribution. That
is, there is some distribution π so that if Xt is distributed according to π, then so is Xt+1. We omit
the proof of this theorem (if you are curious, there is a nice overview in Mitzenmacher and Upfal).

Theorem 1 (The Fundamental Theorem of Markov Chains). LetX0, X1, . . . be a Markov chain over
a finite state space, with transition matrix P . Suppose that the chain is irreducible and aperiodic.
Then the following hold:

1. There exists a unique stationary distribution, π = (π1, π2, . . .) over the states such that: for
any states i and j,

lim
t→∞

Pr[Xt = i|X0 = j] = πi.

2. For each state i, πi = 1
E[min(t:Xt=i)|X0=i]

, namely πi is the inverse of the expected return time
of state i.

3. π is a left eigenvector of matrix P , with eigenvalue 1, namely the vector-matrix product

πP = π.

The crucial aspect of the above theorem is that the probability of being in a given state, i, even-
tually becomes independent of the state we started in, j. This is the crucial property of irreducible
and aperiodic Markov chains! It is natural to ask whether analogs of the above theorem hold when
the Markov chain in question is either 1) not finite, 2) not irreducible, and 3) not aperiodic.

• (Infinite State Spaces) There is an analog of the theorem that applies to Markov chains with an
infinite state space. This theorem states that, provided the chain is aperiodic and irreducible,
either there is a unique stationary distribution such that for all states i, j limt→∞ Pr[Xt =
i|X0 = j] = πi > 0, or for all states limt→∞ Pr[Xt = i|X0 = j] = 0.
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• (Not Irreducible) Given any non-irreducible Markov chain, one can decompose it into (possi-
bly more than one) irreducible components, corresponding to the strongly connected compo-
nents of the graph. Each of these components will have a stationary distribution (provided the
chain is aperiodic), though which of these stationary distributions the chain eventually ends
up at, depends on the randomness of the early part of the chain.

• (Not Aperiodic) If a chain is periodic, but is finite and irreducible, there will still be a unique
stationary distribution, π, satisfying πP = π, though it is not the case that limt→∞ Pr[Xt =
i|X0 = j] = πi, since this probability will depend on whether or not t divides the period, and
hence this limit does not exist. This is the only issue: for example, it is still the case that, in
the limit, the chain will have been in state i exactly πi fraction of the time.

The uniqueness of the stationary distribution for irreducible, aperiodic (finite) chains is extremely
powerful. It means that, if we are able to guess a distribution π and check that πP = π, then we have
proved that π is the stationary distribution. One way of thinking about the condition that πP = π, is
that this condition simply means that, if we start with πi probability mass at state i, and evolve the
chain by one step, then the amount of probability mass leaving state i (along the outgoing edges in
the graph representation of the Markov chain) is exactly equal to the probability arriving at state i
from its neighbors. The following two examples/propositions illustrate this approach to describing
stationary distributions.

Proposition 7. For any Markov chain where transitions are symmetric (e.g. Pr[Xt = i|Xt−1 = j] =
Pr[Xt = j|Xt−1 = i]), if the chain is aperiodic and irreducible, then the stationary distribution is
the uniform distribution over states.

Proof. Letting π denote the uniform distribution over states, which assigns probability 1/|S| to each
of the |S| states, consider the ith entry of πP , which we’ll denote by πP (i) :

πP (i) =
∑
j

πjPj,i =
∑
j

πjPi,j =
1

|S|
∑
j

Pi,j =
1

|S|
= πi,

where the second equality used the assumption of symmetry, that Pi,j = Pj,i, the third equality used
the fact that πj = 1/|S|, and the final equality used the fact that the sum of entries in any row of P
is 1, as these entries correspond to the distribution of transitions out of a fixed state.

Example 8. Consider the following protocol for shuffling a deck of n cards: choose 2 cards at
random, and swap their positions. (If we pick the same card twice, then assume we don’t do anything
in that step.) Since the transitions are symmetric, (and the chain is aperiodic and irreducible...) by
the above proposition, the stationary distribution is the uniform distribution over the n! orderings of
the cards, and this is a valid shuffling procedure.

Proposition 9. Let X0, X1, . . . represent a random walk on a connected undirected graph, defined
by letting Xt be a uniformly random neighboring node of the node corresponding to Xt−1. Provided
the graph is not bi-partite, then there is a unique stationary distribution that puts probability π(v) =
degree(v)

2|E| on node v, where |E| denotes the number of edges in the graph.

The magic of the above proposition is that this stationary distribution depends only on the de-
grees of the nodes, and not on the structure of the graph! [E.g. suppose we have a social network,
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and there is a magical stone being passed from friend to friend. The probability you have the stone
at some fixed time, t, long in the future, is a function of only the number of friends you have, and
doesn’t depend on who those friends are connected to.

Proof. First, note that π as defined in the problem is actually a distribution, because the
∑

v degree(v) =
2|E|. Since the graph is connected, the walk is irreducible. If the graph is not bipartite, there is a
cycle of odd length (by definition). There is also a cycle of even length, e.g. take any edge, and cross
it then cross back. Hence the greatest-common-divisor of return times can be any even number, and
also can include any multiple of this odd length cycle, and hence the gcd is 1. So there is a unique
stationary distribution. To see that the claimed distribution is the stationary distribution, consider
the amount of probability mass leaving node v at one step of the walk: this is simply π(v), since
there are no self-loops. The probability entering state v is∑

u=Neighbor(v)

deg(u)

2|E|
1

deg(u)
=

∑
u=Neighbor(v)

1

2|E|
=
deg(v)

2|E|
= π(v),

where the second term in the first expression corresponds to the fact that each neighbor, u, will send
1/deg(u) of its probability mass to each of its neighbors, including v. Hence πP = π, and so π is
the stationary distribution.

2 Markov Chain Monte Carlo: The Metropolis Algorithm
Given the fundamental theorem of Markov chains, one way of drawing samples from some distri-
bution of interest, would be to 1) construct an irreducible aperiodic Markov chain whose stationary
distribution, π is the distribution of interest, and then 2) run the chain for a long time, and return Xt

as a samples from something close to the stationary distribution. (Ideally, we would have t → ∞,
though then we would never get our sample....)

For many distributions of interest, it is much easier to construct such a Markov chain versus try-
ing to describe the distribution explicitly. (This is especially true when the distribution corresponds
to some process whose evolution is easy to model via a Markov chain.)

Example 10. Suppose that we want to sample a uniformly random proper k-coloring of a graph G.
(Here, a “proper k-coloring” is a way to color the vertices so that no two adjacent vertices have the
same color). We may want to do this, for example, if we want to estimate the fraction of colorings in
which vertex 1 and vertex 10 have the same color: just draw a bunch of random colorings and ask
how many of them color those two vertices the same color.

It seems a bit tricky to sample a random proper coloring—in fact, it seems tricky even to count the
number of proper colorings of an arbitrary graph, and hence tricky even to determine the probability
distribution we want to sample from! (This latter problem is #P complete, meaning that it’s unlikely
that there’s an efficient algorithm to do it exactly in general). But we can approximately sample a
proper coloring using a Markov chain.

Consider the following Markov chain on proper colorings. Suppose that Xt is any proper color-
ing. We form Xt+1 as follows:

• Choose a random vertex and a random color.
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• If coloring that vertex that color in Xt results in a proper coloring, let Xt+1 be the new
coloring.

• Otherwise, Xt+1 = Xt.

It is not hard to check that this is aperiodic. It turns out that it’s irreducible provided that k is big
enough (at least the maximum degree plus 2), so by Proposition 7, the stationary distribution is
uniform. Hence as t→∞, the distribution of Xt approaches the uniform distribution.

2.1 The Metropolis Algorithm
We got lucky in the example above: we happened to guess a Markov chain that just so happened to
have the stationary distribution we were after. But what if we don’t happen to get so lucky?

The Metropolis Algorithm is one generic way of constructing a chain to have a desired stationary
distribution, π. To apply this approach, we need the following ingredients:

• A connected graph G whose nodes are the set S corresponding to the support of the distribu-
tion π. Ideally, the degree of G should be pretty small, and given i ∈ S, it should be efficient
to compute the neighbors of i in G.

[In Example 10, S would be the set of all proper colorings, and one proper coloring would be
connected to another if it only differs on one vertex.]

• For two states, i, j, in the above graph, we need to be able to calculate the ratio π(i)/π(j),
where π is the distribution we care about.

[In Example 10, we have π(i)/π(j) = 1 for all i, j, since we are looking for the uniform
distribution ]

Notice that if we only know π up to some scaling factor—e.g., if π is uniform over some
unknown number of things—then we can compute π(i)/π(j).]

Given the above setup, consider the following Markov chain over states S: Let d be any constant
larger than the maximum degree of the graph we are given. Then define the transition matrix Pi,j as
follows:

Pi,j =


0 if i, j not neighbors
1
d
min(1, π(j)

π(i)
) if i 6= j and they are neighbors

1−
∑

` 6=i Pi,` if i = j.

(1)

Theorem 2. The Markov chain constructed above is irreducible, aperiodic, and has stationary
distribution π.

Proof. The irreducibility is from the connectedness of the graph, and the aperiodicity is because d
is larger than the maximum degree, and hence there are self-loops that have positive probability. We
now analyze the probability leaving, and entering at each node, given the distribution π, to prove
that πP = π. In the following expression, N(i) denote the set of neighboring states in the graph of
state i, and i 6∈ N(i). The probability leaving node i is

π(i)
∑
j∈N(i)

1

d
min(1,

π(j)

π(i)
) =

 ∑
j∈N(i):π(i)≥π(j)

π(j)

d

+

π(i) ∑
j∈N(i):π(i)<π(j)

1

d

 .
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The total probability mass arriving at state i is

∑
j∈N(i)

π(j)

d
min(1,

π(i)

π(j)
) =

 ∑
j∈N(i):π(i)≥π(j)

π(j)

d

+

 ∑
j∈N(i):π(i)<π(j)

π(i)

d

 .

Hence the probability entering and leaving each node is equal, so πP = π, and hence π is the
(unique) stationary distribution, by the fundamental theorem of Markov chains.

If we this theorem to the set-up in Example 10, wth d equal to |V | · k (the number of vertices in
G times the number of colors), we will recover the same Markov chain from the example.3

To see the power of the Metropolis algorithm, consider trying to adapt Example 10 to the dis-
tribution π where a coloring with k − j colors is j times more likely than a coloring with exactly k
colors. That is, for a proper coloring C with exactly k − j colors, π(C) = j/Z, where

Z =
∑

0≤j≤k

j · [number of proper colorings with exactly k − j colors ]

is a normalizing constant.
In this case, it seems quite hard to compute π(C) for any given coloring C, and it’s not a priori

obvious [to me...] how to set up a Markov chain with π as a stationary distribution. But π(C)/π(C ′)
is pretty easy to compute, and so we can use the Metropolis algorithm.

Of course, in order for the Metropolis approach to be meaningful in any concrete sense, we not
only need that, in the limit as t→∞, Xt is drawn from π, but we need that for some (ideally small)
finite value of t, the distribution of Xt is close to π. In the next class, we will define the notion of
mixing time, which is the amount of time it takes before Xt becomes close to π, for an appropriate
definition of “close”, and will discuss several techniques for bounding the mixing time. One of
these techniques is “coupling”, which is an incredibly elegant approach that often requires a bit of
creativity to apply.

3We can choose d = |V | · k since the degree of this graph is strictly less than |V | · k.
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