Class 15

Mixing Times and Coupling

Announcements

- Tomorrow (Friday) is deadline for changing to/from CR/NC, and for withdrawing.
- HW7 is out now, due the Friday after break.
- Have a fantastic fall break!

Recap: Mixing Times

$$\Delta(t) = \max_{s} \|\pi - P_{s}^{t}\|$$
$$\tau_{mix} = \min\left\{t : \Delta(t) < \frac{1}{2e}\right\}$$

Recap: Coupling

• Motivation:

$$\Delta(t) \le \max_{s,s'} \left\| P_s^t - P_{s'}^t \right\| \le 2\Delta(t)$$

- Def of Coupling:
 - X_t, Y_t both individually follow the Markov chain (but may be correlated!)
 - If $X_t = Y_t$, then $X_{t+1} = Y_{t+1}$
- Why we care:

$$\Delta(t) \le \max_{s,s'} \Pr[X_t \neq Y_t]$$

Aka, $\tau_{mix} \leq \text{time for } \{X_t\} \text{ and } \{Y_t\} \text{ to meet with probability at least } \frac{1}{2e}$.

Questions?

Mixing times, coupling, quiz?

- What is τ_{mix} for the MC with transition matrix $\begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix}$?
- Answer: 1. We mix immediately.

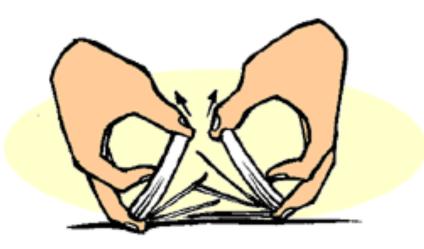
• What about
$$\begin{pmatrix} 1/4 & 3/4 \\ 1/4 & 3/4 \end{pmatrix}$$
?

• Still 1. The stationary distribution is (1/4, ³/₄), and we achieve it immediately.

- In a deck of 52 cards, pick two independently random cards and swap them. Which is a valid coupling for this chain?
- A: Two completely independent random walks.
- B: Two completely independent random walks, UNTIL they hit the same thing, and then they step together.
- C: If we swap index a and index b in deck 1, do the same in deck 2.
 - (Note that this is a terrible coupling, since we NEVER couple if we don't start at the same point, but it's still legit).

Today: Shuffling!

- Shuffling procedure:
 - Pick a random card.
 - Move it to the top of the deck.



First Group Work: practice with coupling

- Shuffling procedure:
 - Pick a random card.
 - Move it to the top of the deck.
- 1. Is this irreducible and aperiodic? What's the stationary dist?
- 2. Come up with a good coupling.
- 3. How long until your coupling couples whp?
- 4. Bound the mixing time.

• This is aperiodic, irreducible.

The stationary distribution is _____

.

Q1

- This is aperiodic, irreducible.
 - Aperiodic since there are self-loops.
 - Irreducible since you can get to any ordering by picking cards to move in the order that you want.
- The stationary distribution is uniform.
 - If you start with a uniformly random deck, and move a random card to the top, it's still uniformly random.

Q2: A good coupling?

A coupling

- We need to come up with $(X_0, Y_0), (X_1, Y_1), ...$
- Choose the same card in both decks (both the "X" and the "Y" deck).
 - A.k.a., if we move the Ace of Spades in the X deck, also move the Ace of Spades in the Y deck.
- This is a valid coupling:
 - Looking at just one deck, it looks like we are always choosing a uniformly random card and moving it to the top.
 - Once the two decks are the same, they will always stay the same.

Q3: How long until the two chains couple?

How long until the chains couple?

 Observation: The chains have coupled once every card has been chosen.

eg,	DECK 1	DECK 2
	1, 2, 3, 4	4, 3, 1, 2
Pick "1"	2, 3, 4, 1	4, 3, 2, 1
Pick "3"	2, 4, 1, 3	4, 2, 1, 3
Pick "1"	2,4,3,1	4, 2, 3, 1
Pick "4"	2,3,1,4	2, 3, 1, 4
Pick"2"	3,1,4,2	3,1,4,2

COUPLED

How long until the chains couple?

- Observation: The chains have coupled once every card has been chosen.
- How long until every card has been chosen?
 - This is coupon collecting! About $n \log n$.

Translate this to a bound on the mixing time

Translate this to a bound on the mixing time

$$\Delta (2n \log n) \leq \max_{s, s'} \mathbb{P} \left[T_{s, s'} \geq 2n \log n \right] = o(1)$$

Where $\Delta(t) = \max_{s} || \pi - P_{s}^{t} ||$ is the total variation distance between the distribution after t steps and the stationary distribution.

This implies that
$$T_{mix} \leq 2n \log n$$
.

as long as n is big enough that the o(1) term is at most 1/(2e).

Group Work II: More shuffling!

- Another shuffling procedure:
 - Choose the top card.
 - Put it somewhere random.

• We'll analyze this one with a different technique.

• Another shuffling procedure:

- Choose the top card.
- Put it somewhere random.

1. Convince yourself that this chain is aperiodic and irreducible, with uniform stationary distribution.

- 2. Let T be the first time the original bottom card is placed randomly somewhere. Show that the deck is completely uniform at any time t > T.
- 3. What is E[T]?
- 4. Bound the mixing time.

Group work!

Q1

• This is irreducible and aperiodic.

- Actually, this was a quiz question last time! It's aperiodic since there are selfloops, and irreducible since you can get any deck you want by building it on the bottom of the deck.
- The stationary distribution is uniform.
 - If you take a uniformly random deck and put the top card somewhere random, it's still a uniformly random deck.

• This is irreducible and aperiodic.

• The stationary distribution is uniform.

Q2: Show that X_t is uniform if t > T

Q2: Show that X_t is uniform if t > T

- Let *T* be the first time at which the original bottom card is randomly placed somewhere in the deck.
 - For convenience, from now on "Ace of Spades" refers to "the original bottom card."
 - So T 1 is the first time that the Ace of Spades gets to the top.
- When $t \ge T$, X_t is uniform.
 - Anything below the Ace of Spades is in a uniformly random order, since the only way it could have gotten there was to be placed completely at random.
 - Once the Ace of Spades is at the top, at time T-1, the rest of the deck is uniform.
 - Once you place the Ace of Spades, at time T, the whole deck is now uniform.

Q3: What is E[T]?

Q3: What is $\mathbf{E}[T]$?

 $E[T] = E\begin{bmatrix} \text{time to move} \\ \text{from bottom} \end{bmatrix} + E\begin{bmatrix} \text{time to move} \\ \text{rom bottom} \end{bmatrix} + \dots \\ \frac{1}{3^{rd}} - \text{from bottom} \end{bmatrix} + \dots$

Move if the lop card gets placed below the bottom card. $P[\mathcal{L}] = ln, so$ [E[time unhi]] = N

Move if the top card gets placed <u>below</u> the 2nd_to-bottom card. $P[\mathcal{L}] = \mathcal{L}_n$, so IE [time until] = n/2

$$= n + \frac{n}{2} + \frac{n}{3} + \dots + \frac{n}{(n-1)} + 1 \approx n \log(n)$$

Q4: Bound the mixing time by $O(n \log n)$

- Markov's inequality: $\Pr[T \ge 2e \cdot E[T]] \le \frac{1}{2e}$
- Hint: $P_s^t = p \cdot \sigma + (1 p) \cdot \pi$, where $p = \Pr[T > t]$

•
$$\Delta(t) = \max_{s} \left| \left| \pi - P_{s}^{t} \right| \right|_{TV} =$$

The mixing time is at most $2e\mathbf{E}[X] = O(n \log n)$

$$P_{s}^{t} = \pi \cdot P[t \ge T] + \sigma \cdot P[t < T]$$

$$\int_{\sigma} \int_{\sigma} \int_{\sigma$$

$$\Delta(t) = \| \pi - P_s^t \| = \| \pi - \pi \cdot \mathbb{P}[t \ge T] - \sigma \mathbb{P}[t < T] \| = \mathbb{P}[t < T] \| \pi - \sigma \|$$

$$T \cdot \mathbb{P}[t < T] \qquad \leq \mathbb{P}[t < T]$$

The mixing time is at most $2e\mathbf{E}[X] = O(n \log n)$

 $\Delta(t) = \| \pi - P_s^t \| = \| \pi - \pi \cdot \mathbb{P}[t \ge T] - \sigma \mathbb{P}[t < T] \| = \mathbb{P}[t < T] \| \pi - \sigma \|$ $T \cdot \mathbb{P}[t < T] \leq \mathbb{P}[t < T]$

$$\Lambda(2enlogn) \leq IP[T \ge 2enlogn] \leq \frac{1}{2e}$$

 $T_{mix} \leq 2enlogn.$

Strong Stationary Stopping Times

- A random variable T is a strong stationary stopping time if:
 - 1. The event that T = t depends only on X_0, \ldots, X_t
 - 2. For all states *s*, $\Pr[X_t = s \mid T \ge t] = \pi(s)$

Strong Stationary Stopping Times

- A random variable T is a strong stationary stopping time if:
 - 1. The event that T = t depends only on X_0, \ldots, X_t
 - 2. For all states *s*, $\Pr[X_t = s \mid T \ge t] = \pi(s)$
- **Theorem:** For any strong stationary stopping time, $\Delta(t) \leq P[T > t]$.

Bonus group work if time!

- Shuffling procedure:
 - Assign each card "L" or "R" independently, with probability 1/2
 - Put all "L" cards to the left, preserving their relative order
 - Put all "R" cards to the right, preserving their relative order
 - Put the "L" stack on top of the "R" stack.

This is the **inverse** of a standard riffle shuffle!

Bonus group work if time!

- Shuffling procedure:
 - Assign each card "L" or "R" independently, with probability 1/2
 - Put all "L" cards to the left, preserving their relative order
 - Put all "R" cards to the right, preserving their relative order
 - Put the "L" stack on top of the "R" stack.

Group work:

Use the method of strong stationary stopping times to show that the mixing time of this shuffle is $O(\log n)$.

This is the **inverse** of a standard riffle shuffle!

Solution

Solution

- Each card gets a string in $\{L, R\}^t$
- If two cards have different strings, their order relative to each other will be random.
- Let T be the first time that all the cards have different strings.

Solution

- Each card gets a string in $\{L, R\}^t$
- If two cards have different strings, their order relative to each other will be random.
- Let T be the first time that all the cards have different strings.
- Pr[card x and card y have the same string] = $1/2^t$
- Pr[any two cards have the same string] $\leq n^2 \cdot 2^{-t}$
- Choose $t \ge 3 \log n$ (say) and this is really small.

Recap

- Two ways to bound mixing times:
 - 1. Coupling
 - 2. Strong Stationary Mixing Times
- (Plus spectral techniques, which we saw last week)

Have a great fall break!

