Class 16

Martingales and Azuma-Hoeffding bound

Announcements

I lied!

- Question last time: "Is a coupling (X_t, Y_t) itself a Markov chain?"
- I think I said yes.
- That's not true!! For example, it could be that the way in which X_t and Y_t transition together depends on X_s , Y_s for $s \neq t 1$.

Recap

- $\{Z_t\}$ is a **martingale** with respect to $\{X_t\}$ if for all t:
 - Z_t is a function of X_0, \ldots, X_t
 - $E[|Z_t|] < \infty$
 - $E[Z_t | X_0, X_1, \dots, X_{t-1}] = Z_{t-1}$
- Doob Martingale: $Z_t = E[A | X_0, ..., X_t]$

Azuma-Hoeffding

- Let $\{Z_t\}$ be a martingale w.r.t. $\{X_t\}$ and suppose there are constants c_1, \ldots, c_n so that for all $i \leq n$, $|Z_i Z_{i-1}| \leq c_i$.
- For any $\lambda > 0$,

$$\Pr[|Z_n - Z_0| \ge \lambda] \le 2 \exp\left(\frac{-\lambda^2}{2\sum_i c_i^2}\right)$$

Questions?

Definition of Martingale? Azuma-Hoeffding? Quiz?

Quiz 1

• X_0, X_1, \dots are independent rolls of a six-sided die. Which are martingales w.r.t. $\{X_t\}$?

•
$$Z_t = X_0 + \dots + X_t$$

•
$$Z_t = \left(X_0 - \frac{7}{2}\right) + \left(X_1 - \frac{7}{2}\right) + \dots + \left(X_t - \frac{7}{2}\right)$$

• $Z_t = E[A | X_0, \dots, X_t]$ where $A = \prod_i X_i$

Quiz 2

Let X_1, X_2, \ldots, X_n be independent random variables that lie in [0,1] with probability 1. Let $A=\sum_{i=0}^n X_i^2$.

Apply the Azuma-Hoeffding inequality to the martingale $Z_t = \mathbb{E}[\sum_{j=1}^n X_j^2 | X_1, \dots, X_t]$. What does it say?

 $\Pr[|A - \mathbb{E}A| > n^{2/3}] \leq$ _____

Today: Azuma-Hoeffding in Action

- Example 1: Chromatic number of random graphs
- Example 2: Gambling

Chromatic number

(We saw this example in the mini-lectures)

- Let $G \sim G(n, p)$
- Let $A = \chi(G)$ be the minimum number of colors needed to properly color G.

Vertex exposure martingale

- Let $G \sim G(n, p)$
- Let $A = \chi(G)$
- X_t = status of edges between vertex t and vertices 1,2, ..., t 1
- $Z_t = \mathbb{E}[A \mid X_1, X_2, \dots, X_t]$

Note: this is slightly different than the lecture notes! Both work fine for this example, this one is maybe more standard.

Edge exposure martingale

- Let $G \sim G(n, p)$
- Let $A = \chi(G)$
- X_t = status of edge t, for $t = 1, ..., \binom{n}{2}$
- $Z_t = \mathbb{E}[A \mid X_1, X_2, \dots, X_t]$

Group work: Apply Azuma-Hoeffding both ways!

1. Use Azuma-Hoeffding with the vertex exposure martingale to bound

$$\Pr[|A - E[A]| > c\sqrt{n}] \le 2\exp\left(-\frac{c^2}{2}\right)$$

- 2. What happens with the edge exposure martingale?
- 3. (bonus) what can you say about E[A]?

- 1. Vertex exposure martingale
- Need to bound $|Z_t Z_{t-1}| \leq$ _____

1. Vertex exposure martingale

• Applying Azuma-Hoeffding:

$$\Pr[|Z_n - Z_0| > c\sqrt{n}] \le 2\exp\left(-\frac{c^2 n}{2\sum_i c_i}\right)$$

$$\leq 2 \exp(-c^2)$$

2. Edge exposure martingale

• Need to bound $|Z_t - Z_{t-1}| \leq$ _____

Technically...

See lecture notes

• For any a_t ,

Using independence since in our case the X_t happen to be independent.

Technically...

See lecture notes

$$\begin{split} \mathbb{E}[A|X_1, \dots, X_{t-1}, X_t &= a_t] \\ &= \sum_{a_{t+1}, \dots, a_n} \mathbb{E}[A|X_{\leq t-1}, X_t = a_t, X_{\geq t+1} = a_{\geq t+1}] \Pr[X_{\geq t+1} = a_{\geq t+1}|X_{\leq t-1}, X_t = a_t] \\ &= \sum_{a_{t+1}, \dots, a_n} \mathbb{E}[A|X_{\leq t-1}, X_t = a_t, X_{\geq t+1} = a_{\geq t+1}] \Pr[X_{\geq t+1} = a_{\geq t+1}] \end{split}$$

$$\mathbb{E}[A|X_1, \dots, X_{t-1}, X_t = a_t] - \mathbb{E}[X_1, \dots, X_{t-1}, X_t] \\= \sum_{a_{t+1}, \dots, a_n} \left(\mathbb{E}[A|X_{\leq t-1}, X_t = a_t, X_{\geq t+1} = a_{\geq t+1}] - \mathbb{E}[A|X_{\leq t}, X_{\geq t+1} = a_{\geq t+1}] \right) \Pr[X_{\geq t+1} = a_{\geq t+1}]$$

2. Edge exposure martingale

• Applying Azuma-Hoeffding:

$$\Pr[|Z_n - Z_0| > c\sqrt{n}] \le 2\exp\left(-\frac{c^2 n}{2\sum_i c_i}\right)$$

Next example: gambling

- A fun game:
 - At each step t, you can bet $b_t \in [0, B]$ and guess "heads or tails"
 - Flip a fair coin. If you were right, you win b_t . Otherwise you lose b_t .

Next example: gambling

- A fun game:
 - At each step t, you can bet $b_t \in [0, B]$ and guess "heads or tails"
 - Flip a fair coin. If you were right, you win b_t . Otherwise you lose b_t .
- Notice that b_t can depend on everything that's happened so far.
- Let Z_t be the amount of money you have at time t.
- It's okay for $Z_t < 0$ (the casino knows you're good for it...)

Next example: gambling

- A fun game:
 - At each step t, you can bet $b_t \in [0, B]$ and guess "heads or tails"
 - Flip a fair coin. If you were right, you win b_t . Otherwise you lose b_t .
- Notice that b_t can depend on everything that's happened so far.
- Let Z_t be the amount of money you have at time t.
- It's okay for $Z_t < 0$ (the casino knows you're good for it...)
- Quick question:
 - Is Z_t a sum of independent random variables?

- At each step t, you can bet $b_t \in [0, B]$ and guess "heads or tails"
- Flip a fair coin. If you were right, you win b_t . Otherwise you lose b_t .
- Z_t = amount of money at time t

Group Work

1. Define some random variables X_t so that $\{Z_t\}$ is a martingale w.r.t. $\{X_t\}$

- 2. Use Azuma-Hoeffding to bound $\Pr[|Z_n| \ge cB\sqrt{n}]$
- 3. Does the proof above work if your betting strategy is randomized? If not, make it work.

- 1. Setting up a martingale
- Z_t = amount of \$\$ at time t
- $X_t =$
- This is a martingale because...
 - 1. Z_t is a function of X_0, \ldots, X_t ?
 - 2. $E[|Z_t|] < \infty$?

3. $E[Z_t | X_0, ..., X_{t-1}] = Z_{t-1}$?

2. Using Azuma-Hoeffding

$$\bullet |Z_t - Z_{t-1}| \le ___$$

• Azuma-Hoeffding:

•
$$\Pr[|Z_n - Z_0| \ge c\sqrt{n}] \le 2 \exp\left(-\frac{c^2 n}{\sum_i c_i}\right)$$

With a randomized betting strategy?

- Z_t = amount of \$\$ at time t
- $X_t =$
- This is a martingale because...
 - 1. Z_t is a function of X_0, \ldots, X_t ?
 - 2. $E[|Z_t|] < \infty$?
 - 3. $E[Z_t | X_0, ..., X_{t-1}] = Z_{t-1}$?

Recap

- We got some practice applying Azuma-Hoeffding.
- Moral of the story I:
 - Azuma's inequality can bound sums of random variables that aren't necessarily independent!
- Moral of the story II:
 - One useful case is when you want to establish concentration for a random variable A that doesn't depend too much on any of the underlying variables X_i .
- Moral of the story II:
 - Sometimes there's more than one relevant martingale, and one might be better than the other.