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1 Introduction

In this lecture we introduce the concept of a Martingale, which can be used to analyze many ran-
dom processes. The technical core of this lecture will be the Azuma-Hoeffding tail bound, which
gives a Chernoff style bound on tail probabilities of martingales. These bounds were independently
proved by Azuma and Hoeffding in the 1960’s [1, 2]. Crucially, these bounds will let us often effort-
lessly prove strong concentration results for sums of certain dependent random variables and other
stochastic processes. The proof technique for the Azuma-Hoeffding bounds follow the same general
approach as Chernoff bounds: applying Markov’s inequality to the moment generating function for
the random variable in question. Our analysis of this moment generating function, however, will
crucially leverage the properties of martingales, as opposed to the properties of sums of independent
random variables.

Definition 1. A sequence of real-valued random variables, {Z,} is a martingale with respect to the
sequence (of not necessarily real valued random variables) {X,} if the following conditions hold

forall t:
1. Z, is a function of Xy, ..., Xy,
2. E||Z}]] < o,
3. ElZ|Xo,..., Xi1] = Zi1.

Given this setting, letting Y, = Z, — Z;_4, often refers to the sequence {Y;} as the sequence of
martingale differences. In many cases, { X} is a martingale with respect to itself, in the sense that
E[X;| Xo, ..., Xi1] = Xi_1. In such cases, one generally just says that { X;} “is a martingale”.
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The above definition can be slightly generalized via the notion of filters and o-fields, though we
will not get bogged down in that. For our purposes, the above definition will be sufficient. The
first condition, that Z; is a function of X, ..., X; is not too restrictive: if we would like Z; to be a
randomized function, we can regard Z; as being a deterministic function of Xy, ..., X; in addition
to some random bits b, ..., b’ and then define Z, as a martingale with respect to the sequence
{X]} where X; = (X;,b},...,0.,). Hence we can assume that Z, is a deterministic function of the
Xo, ..., X;. The above definition can be applied both when we have a finite set of Z;’s, as well as
the infinite case.

1.1 The Doob Martingale

One reason why martingales are such a useful concept is that we can obtain a martingale from any
real-valued random variable.

Definition 2. Given a random variable, A, and a sequence of random variables, { X} defined over
a common probability space (i.e. quantities such as Pr[A = 1| Xy = 7] are well defined notions),
the Doob martingale of A with respect to { X, } is the sequence {Z;} defined by

Zt - E[A‘Xo, e ,Xt].

To see why the above definition yields that {Z,} is a martingale with respect to { X}, provided
E[|Z;|] < oo, we simply apply the definition of Z; and simplify:

E[Zt‘Xo, e 7Xt71] — E [E[A’Xo, e ,Xt”Xo, e 7Xt71] - E[AlXo, e >thl] — thl'

In the above, we leveraged the fact that for any random variables X, Y, Z, by the definition of
conditional probability,
E[E[X]Y, Z]|[Y] = E[X|Y],

since the conditioning on 7 is integrated/marginalized out by the outer expectation.

One of the most common ways that the Doob martingale is employed is to analyze properties of
some random variable that depends on a random object—for example, the number of empty bins if
we randomly toss m balls into n bins, or the chromatic number of an Eros-Renyi random graph, etc.
In those settings, the X,;’s sequentially reveal information about the random object and the quantity
in question, until there is no more randomness. The following examples illustrate this use-case of
the Doob martingale.

Example 3. Consider tossing m balls uniformly at random into n bins. Let A denote the number
of empty bins at the end of the process. Letting X; denote the location that the tth ball lands,
consider the Doob martingale defined by Z, = E[A| X, ..., X,|. Here, we are iteratively updating
our expectation of A as we see where each of the n balls is thrown. Zy = E[A|, and Z,, equals the
actual value of A for the realization of the ball-tossing process given by the X,’s.

Example 4. Consider the Erdos-Renyi random graph process G, ,, that constructs an n node graph
by independently including each edge with probability p. Let A denote the chromatic number of the
resulting graph, defined as the smallest number of colors such that it is possible to color the nodes
in such a way that no neighboring nodes have the same color. If we define the random variables
D CTN. ¢ () such that X, is the indicator for whether the tth edge is present in the graph, then we
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have the corresponding Doob martingale defined by 7, = E[A| X1, ..., X;]. This is known as the
edge exposure martingale, as we are revealing the edges one-at-a-time.

Alternately, we could define the random variables Y1, . . .Y, such that Y, is the random variable
describing the neighborhood of the tth node, namely this random variable takes one of 2"~ different
values, according to which of the n—1 potential edges are present between node t and the n—1 other
nodes. We can now define the vertex exposure martingale 7, . .., Z, with Z, = E[A|Y}, ..., Y}].

[Note: this may be a slightly non-standard way of defining the vertex exposure martingale.
Another way would be to define Z; as E|A|Gy], where G is the subgraph of G induced on vertices
1,...,t]

2 The Azuma-Hoeffding Tail Bound

Here is the Azuma-Hoeffding inequality:

Theorem 1. Let {Z,} be a martingale with respect to {X;}, and suppose there are constants
Cly ..., Cp such that foralli < n, |Z; — Z;_1| < ¢;. Forany \ > 0,

A2
Pr[|Z, — Zy| > A\ < 2e 2T,

Let’s compare this with the standard Chernoff bounds. Suppose that X, ..., X, denote the
0/1 outcomes of n independent coin flips, and 7, = E[>_ X;| Xy, ..., X;| is the Doob martingale
corresponding to the total number of heads out of the n tosses. We can apply the Azuma-Hoeffding
inequality to {Z; }. To do that, we need to bound |Z; — Z;_|. We claim that we have |Z; — Z;, ;| <
1/2. To see why, notice that

|Z,L - Zifl‘ - E[Z XJ’X(], e 7Xz] - E[Z X]‘Xo, e ,Xl',l]
J J
= [E[X;|Xi] — E[Xj]|
where above we have used that the X; are independent and so the terms without an X; in them

cancel. Now, no matter what X is (either 0 or 1), we have | X; — 1/2| = 1/2. This means that we
may take ¢; = 1/2 in the statement of the theorem. Applying the theorem, we get

C2n
Pr(|Z, — Zo| > ev/n] < 2¢O/ = 2¢7%,

Notice that Z,, is just equal to ) . X;, and Zj is justequal to E > . X; = n/2. So we get that

Pr(| Y Xi —n/2| > ev/n] < 2e7,

which is our familiar inverse exponential tail bound, similar to what we get from a Chernoff bound.
However, as we will see later, the Azuma-Hoeffding inequality can also be used in other scenarios
where our original Chernoff bound doesn’t.

Now, let’s move on to the proof of Theorem 1. The following lemma will be central to our proof
of Theorem 1.



Lemma 5. Let Y denote a random variable Y € [—c, c| for some constant ¢, with E[Y'] = 0, then
forallt > 0,
E[etY] < €t2C2/2.

Proof. We will first prove the statement when ¢ = 1, from which the claim will follow by observing
that if Y € [—c¢, ¢], the random variable Y’ = Y//c is in the interval [—1, 1], and Y = (t¢)Y”, hence
E[e"] = E[e©Y"]. So if we show that E[e"'] < ¢*/2, the claim will follow.

We now analyze E[e!] for a random variable Y with expectation 0 and magnitude bounded by
1. From the convexity of the exponential function, for any = € [—1, 1],

(1—2)e"CD 4+ (14 z)et?

etx S
2

Hence

2 2
where the final equality is from the assumption that E[Y| = 0. To finish the proof, we will simply

re-express e ' and e’ in terms of their Taylor expansions, and compare this to the Taylor expansion
of ¢*/2. To this end, we have

B[] <E [“ ~Y)e' 4 (1+ Y)et] ety

1(‘t+'f) ! 1+t+t2+t3+ +1 t+t2 v 1+t2+t4+t6+
—\€ €)== - — — — — ... | = - — -
2 2 2 3 2 3 2 4 6

t2/2

On the other hand, the Taylor expansion of "/~ is the following:
¢t £

etQ/Q—Zij—1+t2+ +
_j>02jj!_ 2 4.2 23.3177

hence %(e‘t +e!) < e”/2 because each term of the expansion on the left is at least the corresponding
term in the expansion of the right (and both sequences converge). [

We now prove Theorem 1.

Proof of Theorem 1. We begin with the upper bound. For any ¢ > 0, by the monotonicity of the
exponential, and Markov’s inequality,

E[et(zn_ZO)]

Pr[Z, — Zy > )] = Pr[e!%n=%0) > ] < —

(&

Note that for any random variables A, B, E[A] = E[E[A|B]], hence

E [{n=%)] = B [e'Fn=Znattno1=20)] = B [E[e! PPt Zoa=20) | X X, )]

Since Z,,_ is a function of X, ..., X,,_; we can pull the “constant” et

expectation, yielding:

n-1=%0) gut from the inner

E [E[et(Z”_ZO)|X0, o 7Xn—1]] - E [et(znfl—ZO)E[et(zn_znfl)|X07 o 7Xn—1” <E [et(anl—Zo)] 6t203L/27

where the last inequality resulted from applying Lemma 5 to the random variable Z,,— 7, 1| X, ..., X,,_1
which is zero in expectation and has magnitude bounded by c¢,.
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Iteratively applying the above process, we get that

2
Y

2
E[et(anZO)] <e T .

Hence putting the pieces together, and plugging in ¢ = ﬁ, we obtain the following:

E[et(Z"_ZU)] 25n 2 A2

Pr[Z, — Zy > )] < e T e =¢ 2T,

IN

e—t)\

The lower tail bound is proved analogously. [

Note: At this point we are done with the material in the video lectures. The stuff after this
is meant as a reference for after class.

2.1 Applications of Azuma-Hoeffing

In many settings, the Azuma-Hoeffding tail bound will be easy to apply, because the underlying
quantity we care about corresponds to a clean martingale. It is, however, always worth stopping and
thinking about whether there is a better martingale that you could use—better in the sense that the
bounds on the martingale differences, c;, are smaller, or better in the sense that there are fewer steps
in the sequence (e.g. the difference between the (g) length edge-exposure martingale of Example 4
versus the n terms in the vertex-exposure martingale.

Proposition 6. Letting A denote the chromatic number of an Erdos-Renyi random graph G, ,:

Pr|A — BA]| > ey < e 7.

Proof. Recall the Doob martingale {Z;} corresponding to the vertex exposure martingale from
Example 4. We’d like to apply Azuma’s inequality to this martingale. Intuitively, we have that
|Zy — Z;_1| < 1 for all ¢, since revealing the neighborhood of a vertex can change the expected
chromatic number by at most 1 (in the best case, we save using a color, in the worst case, we need a
new color just for that vertex). Formally, the way we’d see this is the following.

For any a; (which we think of as a possible value for X;), we write:

]E[A|X17 e 7Xt—1; Xt = at]
= Z E[A|X<i—1, Xt = ap, Xopp1 = asp41) Pr[ X1 = a5 | X1, Xi = a4

At+415-.+,an
= E E[A| X< 1, Xt = ap, Xsp11 = aze11] Pr[ X541 = az44]
At415--,0n

using the fact that in our example, the X,’s are independent (since they involve disjoint sets of
edges). Using the same derivation for E[A| X7, ..., X; 1, X;], we can write

]E[A|X1, Ce 7Xt—17Xt = at] — E[Xl, e 7Xt—17Xt]
= Z (E[A| X <t—1, Xi = at, Xory1 = aser1] — E[A| X<ty Xotp1 = a541]) Pr[Xsii1 = s

At+415--+50n



Now, we have that
E[A| X <11, Xi = at, Xopp1 = as41] — E[A| X<, Xoti1 = ase1] < 1

for any values of a;, a;y1,...,a,. This is because the two expressions can differ only in the value
of z,, the local view of vertex ¢. By our observation above, if we change the local view of a single
vertex, this can change the chromatic number A = x(G) by at most 1. Thus, we conclude from the
above that for any ay,

]E[A|X17 cee 7Xt—1aXt = at] - E[Ale, . 7Xt—17Xt] S 1.

But this implies that
E[A| X, ..., Xi ] —E[A| X, ..., X3] <1,

and this is the difference Z;_; — Z; that we wanted to bound. (You can repeat the above derivation
with the two terms switched to bound Z; — Z;_; and hence |Z; — Z;_1|). Thus, this difference is
bounded by 1. So indeed we can take ¢; = 1 as our intuition says.

Hence Theorem 1 holds with ¢; = 1 for all ¢, and the proposition holds. [

Remark 7. In the proof above, we used the fact that the X; were independent. But Azuma’s in-
equality doesn’t require the X, to be independent! Can we use logic like this even if the X; are not
independent? The conditioned that we used above was the deterministic statement that:

A changes by at most ¢; when we change X, no matter what the other X; are. (D

This condition is very simple and easy to check, but it does need independence.' (This is often
called the method of bounded differences). However, there’s a similar—though less easy to check—
condition that doesn’t require independence of the X;, which is that

]E[A|X§t_1, Xt = CL] — E[A|X§t_1, Xt = a'] S Cy (2)

for any a,d’. For a fun exercise, check that the requirement that |Z, — Z,_1| < ¢; can be replaced
by (2) in the statement of Azuma’s theorem for the Doob martingale.

Note that if we had used the edge exposure martingale instead, we would have gotten the much
2

worse bound of Pr[|A — E[A]| > ¢\/n] < e~ ", since there we still would have had ¢; = 1, but we
would have had (}}) &~ n*/2 terms in our sequence.

The next example illustrates how one can deal with martingales that depend on additional ran-
domness beyond the natural choice of { X, } by defining an alternate sequence { X} where each X
includes both X; as well as some additional randomness.

Example 8. Consider a gambling setting where, at each timestep, you can bet any amount between
0 and some “house limit” B. At each step, a fair coin is flipped, and if you correctly guess the
outcome, you win your bet, otherwise you lose your bet (so the expected earnings in any round are
0). Let {X,} denote the outcome of the coin flip in each round. Since the expected winnings at

ITo see that independence is required for this criterion (1) to be enough, just consider the case where either all the X;
are 0 with probability 1/2; or they are all 1 with probability 1/2, andlet A = . X;. Then A satisfies (1) for X; € {0,1},
because if you change just one X;, A can change by at most 1. However, clearly the conclusion of the Azuma-Hoeffding
inequality does not hold, as A is not concentrated at all (it’s O with probability 1/2 and n with probability 1/2).
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each step is 0, we can define the martingale sequence {Z;} where Z, is our net earnings at time t
(i..e. Z; is our net winnings or losses after t rounds). Because |Z;, — Z;_1| < B, we can apply the
Azuma-Hoeffding bound to conclude that

2

Pr|Z,| > ] < 2¢ =57,

Crucially, the above bound holds no matter what betting strategy we use. Even if our bet in the tth
round depends on the outcomes in the previous t — 1 rounds, this still holds.

As an aside, perhaps this is why (some) casino owners can sleep soundly at night—they set the
house limit B to be low enough, in comparison to the number of rounds that will be played, and the
small but non-zero bias that is build into the games, so that the probability that they don’t end up
making money in a given week is extremely small. The inverse exponential with \* in the exponent
makes it okay for them to use a fairly large value B. ...

One final note: if we want to be super pedantic and make sure that {Z;} is actually a martingale,
even for a randomized betting strategy that depends on previous rounds, and on other random whims,
etc., then we would say that {Z,} is a martingale with respect to the sequence {X,}, where X,
denotes both the outcome of the t’th round, as well as the bet we will place in the t 4+ 1’st round.
This is a perfectly valid sequence of random variables, and it is true that {Z;} is a martingale with
respect to { X}, since Z, is a deterministic function of X, ..., X, and E[Z; 11| X{, ..., X]| = Z:]
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