Class 17

Martingale Stopping Theorem; Wald's equation

Announcements

- HW7 due tomorrow!
- HW8 out now!
- You are now all done with quizzes!!!
- FINAL EXAM will be Thursday Dec 15, 12:15-3:15 in 420-040.
 - We'll release a practice exam with our cheat sheet soon.
- Check out Ed for an addendum to my flailing at the end of Tuesday's class.
- Plan for week 10:
 - Tuesday: Fun "bonus" material on pseudorandomness. (No quiz, will not be on HW or exam).
 - Thursday: The research frontier! (At least 2 short research talks).

Recap!

- Stopping times
- Martingale Stopping theorem
- Applications

Stopping times

- T is a **stopping time** for $\{X_t\}$ if the event that T = i is mutually independent of all the random variables $X_i | X_0, ..., X_i$, for all j > i.
 - Informally, you should be able to tell that *T* has occurred at time *T*, without looking into the future.
 - Example: The first time X_t hits 100.
 - Non-example: The last time X_t hits 100.

Martingale Stopping Theorem

- Let $\{Z_t\}$ be a martingale w.r.t. $\{X_t\}$.
- Let T be a stopping time for $\{X_t\}$.
- Then $\mathbf{E}[Z_T] = \mathbf{E}[Z_0]$ if at least one of the following hold:
 - There is a c so that $|Z_i| < c$ for all i
 - There is a c so that T < c with probability 1
 - There is a c so that $\mathbf{E}[|Z_{i+1} Z_i| | X_0, ..., X_i] < c$ for all i, and $\mathbf{E}[T] < \infty$

Why do we care?

- Hitting time of random walks!
- Set up a martingale Z_t so that $\mathbf{E}[Z_T]$ has something to do with something you care about.

• E.g., $\mathbf{E}[Z_T] = \Pr[Z_T = b] \cdot b - \Pr[Z_T = a] \cdot a$

- You know what $\mathbf{E}[Z_0]$ is.
 - E.g., $\mathbf{E}[Z_0] = 0.$
- Solve FTW.

• E.g.,
$$\Pr[Z_T = b] = \frac{a}{a+b}$$

Questions?

Stopping times, martingale stopping thm, quiz?

Q1. Is it a stopping time?

- Z_t is the sum of t rolls of a fair six-sided die.
- $T_1 = \min\{t: Z_t \ge 12\}$
- $T_2 = \min\{t: Z_{t+2} \ge 12\}$

•
$$T_3 = \min\left\{t: Z_t - \frac{7t}{2} \ge 12\right\}$$

Q2.

• $T_1 = \min\{t: Z_t \ge 12\}.$ • $T_2 = \min\{t: Z_{t+2} \ge 12\}$ • $T_3 = \min\{t: Z_t - \frac{7t}{2} \ge 12\}$

• Same Z_t as before.

•
$$Y_t = Z_t - \frac{7t}{2}$$

- To which of the stopping times does the MST apply?
 - T_1 and the Y_t 's: Yes, since $T_1 < 13$ with probability 1.
 - T_1 and the Z_t 's: No, since the Z_t 's are not a martingale.
 - T_3 and the Y_t 's: No, since the conditions of the MST aren't met.
 - Intuitively, Y_t can wander off to $-\infty$ without ever hitting 12.

Q3. Hitting times

•
$$Q_0 = 0$$

• $Q_t = \begin{cases} Q_{t-1} + 3 & \Pr{\frac{1}{2}} \\ Q_{t-1} - 3 & \Pr{\frac{1}{2}} \end{cases}$

•
$$\mathbf{E}[\min\{t : |Q_t| = 30\}] = 100$$

Plan for today

- Wald's Equation
- (If time) Ballot counting thm

Wald's Equation

Theorem.

- Suppose that X_1, X_2, \dots are non-negative i.i.d. random variables, $X_i \sim X$.
- Let T be a stopping time for $\{X_i\}$.
- Suppose that $\mathbf{E}[T]$, $\mathbf{E}[X] < \infty$.
- Then

$$\mathbf{E}\left[\sum_{i=1}^{T} X_i\right] = \mathbf{E}[T] \cdot \mathbf{E}[X]$$

Group Work

- 1. Find an example where Thm 1 fails if the hypotheses aren't met.
 - Try to violate as few of the hypothesis as you can!

2. Let $Z_i = \sum_{j=1}^{i} (X_j - E[X])$. Prove that $\{Z_t\}$ is a martingale wrt $\{X_t\}$

- 3. Show that the martingale stopping thm applies to $\{Z_t\}$ and T.
- 4. Use the martingale stopping thm to prove Wald's equation.
- 5. Consider rolling a fair six-sided die repeatedly. Let X be the the sum of all of the rolls up until the first "6" is rolled. (Not including that first "6"). What is E[X]?

1. Examples where Wald's eqn doesn't hold

1. An example where the conclusion does not hold.

- Let X₁, X₂, ..., be i.i.d. {0,1} random variables, mean 1/2.
 Actually we only need X₁
- Let T be $1 X_1$. (Note that T is not a stopping time!)
- Then $\mathbf{E}[\sum_{i=1}^{T} X_i] = 0.$
 - If $X_1 = 1$ then we sum zero things
 - If $X_1 = 0$ then we sum one thing which is equal to 0
- But $\mathbf{E}[T] \cdot \mathbf{E}[X] = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$

Let $Z_i = \sum_{j=1}^{i} (X_j - IE[X])$

2. Z_i is a martingale

• $\mathbf{E}[Z_i|X_1, ..., X_{i-1}] = Z_{i-1}$

• $\mathbf{E}[|Z_i|] < \infty$

3. The Martingale Stopping Thm applies

Theorem 1 (Martingale Stopping Theorem). Letting $\{Z_t\}$ denote a martingale with respect to $\{X_t\}$, and T a stopping time for $\{X_t\}$, then $\mathbf{E}[Z_T] = \mathbf{E}[Z_0]$ if at least one of the following conditions hold:

- 1. If there exists a constant c such that for all i, $|Z_i| < c$.
- 2. If there exists a constant c such that with probability 1, T < c.
- 3. If $\mathbf{E}[T] < \infty$, and there exists a constant c such that for all i, $\mathbf{E}[|Z_{i+1} Z_i|||X_0, \ldots, X_i] < c$.

3. The Martingale Stopping Thm applies

• Apply the third condition:

$$E[T] < \infty \quad (by assm)$$

$$E[Z_{i+1} - Z_i] \cdot [X_{1,s-s}, X_i] = E[X_{i+1} - |E[X_{i+1}]]$$

< 2 [E[X] is bounched. (by assm)

Theorem 1 (Martingale Stopping Theorem). Letting $\{Z_t\}$ denote a martingale with respect to $\{X_t\}$, and T a stopping time for $\{X_t\}$, then $\mathbf{E}[Z_T] = \mathbf{E}[Z_0]$ if at least one of the following conditions hold:

- 1. If there exists a constant c such that for all i, $|Z_i| < c$.
- 2. If there exists a constant c such that with probability 1, T < c.

3. If $\mathbf{E}[T] < \infty$, and there exists a constant c such that for all i, $\mathbf{E}[|Z_{i+1} - Z_i|||X_0, \ldots, X_i] < c$.

4. Apply the martingale stopping theorem

4. Apply the martingale stopping theorem $\mathbb{E}[Z_T] = \mathbb{E}[Z_1] = O.$ $O = IE[Z_T] = IE[\Sigma_{j=1}^T(X_j - IEX)]$ $= \left[\left\{ \left(\sum_{j=1}^{T} \chi_{j} \right) - \overline{I} \right\} \right] \right]$ $= \mathbb{E} \left[\sum_{j=1}^{+} X_{j} \right] - \mathbb{E} \left[T \right] \cdot \mathbb{E} \left[X \right]$

 $\Rightarrow \mathbb{E}\left[\Sigma_{j=1}^{T}X_{j}\right] = \mathbb{E}\left[T\right] \cdot \mathbb{E}\left[X\right].$

5. Application of Wald's equation

- X = sum of die-rolls up until you get a six. (Not including that six).
- E[X] =

Ballot counting

- Election with two candidates, A and B, and n voters.
- A will win, receiving $N_A > N_B$ votes. (so $N_A + N_B = n$).
- Ballots are counted in a random order.
- What is the probability that A remains ahead the whole time?

• Election with two candidates, A and B, and n voters.

- A will win, receiving $N_A > N_B$ votes. (so $N_A + N_B = n$).
- Ballots are counted in a random order.
- What is the probability that A remains ahead the whole time?

Ballot counting

- Let A_t be number of votes for A at time t
- Let B_t be number of votes for B at time t

• Let
$$Z_t = \frac{A_{n-t} - B_{n-t}}{n-t}$$

Group Work

1. Let T be smallest t so that $Z_t = 0$; if this never occurs, T = n - 1. Explain why MST applies to $\{Z_t\}$ and T.

• Assume for now that $\{Z_t\}$ is a martingale.

- 2. Apply MST to $\{Z_t\}$ and T, and use it to compute the probability that A was ahead the whole time.
- 3. Show that $\{Z_t\}$ is indeed a martingale.

1. Let T be smallest t so that $Z_t = 0$; if this never occurs, T = n - 1. Explain why MST applies to $\{Z_t\}$ and T.

Theorem 1 (Martingale Stopping Theorem). Letting $\{Z_t\}$ denote a martingale with respect to $\{X_t\}$, and T a stopping time for $\{X_t\}$, then $\mathbf{E}[Z_T] = \mathbf{E}[Z_0]$ if at least one of the following conditions hold:

1. If there exists a constant c such that for all i, $|Z_i| < c$.

2. If there exists a constant c such that with probability 1, T < c.

3. If $\mathbf{E}[T] < \infty$, and there exists a constant c such that for all i, $\mathbf{E}[|Z_{i+1} - Z_i| ||X_0, \dots, X_i] < c$.

$$Z_t = \frac{A_{n-t} - B_{n-t}}{n-t}$$

2. Apply MST to compute the prob. A was ahead the whole time.

- $E[Z_T] = E[Z_0] =$
- OTOH, $E[Z_T] =$

$Z_t = \frac{A_{n-t} - B_{n-t}}{n-t}$

3. Show Z_t is indeed a martingale

• Start two piles of ballots. Take one from a random pile at each step.

Recap

• The Martingale Stopping Theorem is useful!