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1 The Martingale Stopping Theorem
Given that a martingale, by definition, has the property that E[Zt|Z0, . . . , Zt−1] = Zt−1, it follows
inductively that E[Zt] = E[Z0] for any fixed value of t. In this lecture, we consider what can happen
if we consider E[ZT ] when T is a random variable. Before formally defining a stopping time, we
begin with two examples that motivate the subtlety that can arise according to the properties of T .

Example 1. Consider the gambling game where we start with 0 dollars, and at every timestep, we
either win or lose a dollar with probability 1/2, independently of the outcome of previous timesteps.
Let Zt denote our net winnings/losses after t rounds of the above game. Consider the random
variable T defined as the first time at which |Zt| = 10, and the random variable T ′ define as the first
time at which Zt = 10. Both T and T ′ are perfectly valid random variables, because they are finite
with probability 1, namely

lim
t→∞

Pr[exists t′ < t s.t. |Zt′ | = 10] = 1, and lim
t→∞

Pr[exists t′ < t s.t. Zt′ = 10] = 1.

In the case of T , it holds that E[ZT ] = Z0 = 0. In the case of T ′, however, by the definition of T ′

E[ZT ′ ] = 10 6= Z0.

In the above example, what makes T and T ′ so different? More broadly, is there a set of prop-
erties that T could have that would guarantee that E[ZT ] = E[Z0]? The Martingale Stopping The-
orem, also sometimes referred to as the Optional Stopping Theorem, provides one set of sufficient
such conditions.

Before stating the stopping theorem, we formalize the notion of a randomized “stopping time”.
Informally, a stopping time T for a discrete time process {Xt} is an integer-valued random vari-
able with the property that the event that T = i depends only on X0, . . . , Xi and in particular is
independent of Xi+1, . . . conditioned on X0, . . . , Xi.
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Definition 2. Given a discrete time process {Xt} (which can be a martingale, Markov chain, or
anything else), a random variable, T , is a stopping time for {Xt} if the event that T = i is mutually
independent of the random variables {Xj|X0, . . . , Xi}, for all j > i.

The following example illustrates a few stopping times, and one random variable that is not a
stopping time.

Example 3. Given the unbiased random walk where Z0 = 0 and Zi = Zi−1 + 1 with probability
1/2 and Zi = Zi−1 − 1 with probability 1/2, consider the following quantities:

• T1 = min{t : Zt = 10},

• T2 = min{t : Zt 6∈ [−5, 10]},

• T3 = max{t : Zt > 0}.

T1 and T2 are perfectly good stopping times. T3, on the other hand, is not a stopping time, because
determining if T3 = i involves looking into the future.

1.1 Statement of the Theorem
The following theorem provides one set of sufficient conditions for E[ZT ] = E[Z0] for a stopping
time T . Note that these are sufficient conditions, but they are not necessary—there exist more
general formulations of this theorem.

Theorem 1 (Martingale Stopping Theorem). Letting {Zt} denote a martingale with respect to {Xt},
and T a stopping time for {Xt}, then E[ZT ] = E[Z0] if at least one of the following conditions hold:

1. If there exists a constant c such that for all i, |Zi| < c.

2. If there exists a constant c such that with probability 1, T < c.

3. If E[T ] <∞, and there exists a constant c such that for all i, E[|Zi+1−Zi|‖X0, . . . , Xi] < c.

The proof of the above theorem is not too long, but involves a careful analysis of which limits
exist, etc. We have not covered this sort of thing in any rigor in this class, and we’ll leave the proof
of this for a class on measure theory.

Returning to Example 1, it should now be clear the difference between T and T ′. While they are
both valid stopping times, E[T ′] is not bounded, nor is T ′, and hence the above theorem does not
apply to T ′. T on the other hand satisfies the first condition, as |Zi| ≤ 10. (Technically, to make this
statement actually true, we could define the martingale {Z ′t} by Z ′t = Zt for all t ≤ T , and Z ′t = ZT

for t > T , in which case E[ZT ] = E[Z ′T ], and |Z ′t| ≤ 10 for all t.)

2 Hitting Times of Random Walks
One useful application of the Martingale Stopping Theorem is in bounding the amount of time it
takes for certain events to happen. We illustrate this with two natural examples.
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Theorem 2. Consider the unbiased random walk {Zt} where Z0 = 0 and Zt = Zt−1± 1, with each
outcome chosen with probability 1/2 independently of previous steps. Letting T denote the first time
that Zt reaches either −a or +b, then

Pr[ZT = b] =
a

a+ b
and E[T ] = ab.

Proof. For the first part of the theorem, note that the martingale stopping theorem applies to ZT , as
the sequence is contained in range [−a, b], and hence the first condition is satisfied. Hence E[ZT ] =
Z0 = 0. On the other hand 0 = E[ZT ] = bPr[ZT = b] + (−a) (1− Pr[ZT = b]) . Solving for
Pr[ZT = b], we get Pr[ZT = b] = a

a+b
. (This result has the nice interpretation that the probability

we walk away having won, is proportionate to how much we are willing to lose before we quit : )
To prove the second part, establishing the expected time until the game ends, we will combine

the above result with an analysis of a new martingale. Consider the sequence {Yt} defined for
t = 0, . . . , T , as Yt = Z2

t − t. First we establish that {Yt} is a martingale with respect to {Zt}, and
then we will apply the martingale stopping theorem to {Yt}. To check that {Yt} is a martingale,
consider

E[Yt|Z0, . . . , Zt−1] =
1

2
(Zt−1 + 1)2 +

1

2
(Zt−1 − 1)2 − t = Z2

t−1 − (t− 1) = Yt−1.

Neither of the first two conditions of the martingale stopping theorem are satisfied by {Yt},
since it need not be bounded, and T is not bounded. The third condition, however, holds because
|Yt+1 − Yt| ≤ 1 + 2|Zt| = 1 + 2max(a, b), and E[T ] is bounded, as can be seen by noting that, no
matter the value of Zt, there with probability at least 1/2b+a, the game will end after b+a additional
steps, hence E[T ] ≤ 2b+a(b+ a) <∞.

Applying the stopping theorem yields that 0 = Y0 = E[YT ] = E[Z2
T ] − E[T ]. Now, we use

the fact that we know everything there is to know about ZT , namely we know that ZT = −a with
probability b/(a+ b) and ZT = b with probability a/(a+ b). Hence

E[T ] = E[Z2
T ] = a2

b

a+ b
+ b2

a

a+ b
= ab

a+ b

a+ b
= ab.

The trickiest step in the proof of the above theorem was the construction of the martingale
Yt = Z2

t − t. While it is easy to verify that this is a martingale, the intuition for why an expression
like this would be a martingale is not intuitive. The following theorem, characterizing the behavior of
biased random walks, leverages an even more mysterious martingale. The statement of the following
theorem is not the important part—the important part is that it is possible to leverage the martingale
stopping theorem to exactly calculate properties of stochastic processes, such as the expected time
until something happens, the probabilities of certain outcomes, etc.

Theorem 3. Suppose you start with 0 dollars, and at every timestep you win a dollar with probability
p, and lose a dollar with probability 1− p. Letting T denote the first time that you are either up by
b dollars, or down by a dollars, and ZT denote your net winnings/losses at this time,

Pr[ZT = −a] = (1− Pr[ZT = b]) =
1− cb

c−a − cb
,
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where c = 1
p
− 1. Additionally,

E[T ] =
(−a) 1−cb

c−a−cb + b(1− 1−cb
c−a−cb )

2p− 1
.

Proof. Let {Xt} denote the sequence of outcomes of the game, andZt denote the net winnings/losses
through time t. Since the game is biased, {Zt} is not a martingale. We will now construct a martin-
gale {Yt} where Yt = cZt for an appropriate constant c, defined as a function of p, and then apply
the stopping theorem to {Yt}.

To determine the appropriate constant c, we want Yt−1 = E[Yt|Z0, . . . , Zt−1], so we will simply
calculate the expression on the right side, and hope that we can find a value of c to satisfy this
equation.

E[Yt|Z0, . . . , Zt−1] = pcZt−1+1 + (1− p)cZt−1−1 = cZt−1

(
cp+

1− p
c

)
.

So, to calculate the value of c as a function of p for which {Yt} is a martingale, we simply solve
the equation 1 = cp + 1−p

c
, yielding that c is a solution to c2p − c + (1 − p) = 0. There are two

solutions to this quadratic, as long as p ∈ (0, 1). One solution is c = 1, in which case we get a
useless martingale where Yt = 1 for all t. The other solution is c = 1

p
− 1, which yields a non-trivial

martingale that we can use. Henceforth, we define c = 1
p
− 1.

Letting T denote the first time Zt reaches either−a or +b, by the Martingale Stopping Theorem,
E[YT ] = Y0 = c0 = 1. On the other hand, E[YT ] = c−a Pr[ZT = −a] + cb Pr[ZT = b]. Setting this
equal to 1 and solving for Pr[ZT = −a] yields

Pr[ZT = −a] = 1− cb

c−a − cb
,

which simplifies to cb/(cb + 1) when a = b.
To calculate E[T ], we will use the above result, together with a new martingale: Let Qt =

Zt − αt. We will define an appropriate constant α such that {Qt} is a martingale with respect to
{Zt}. We want E[Qt|Z0, . . . , Zt−1] = Qt−1, so since E[Qt] = Qt−1 + p(1) + (1− p)(−1) + α, we
can simply set α = 1 − 2p to obtain a martingale. Applying the martingale stopping theorem, we
have that E[QT ] = (−a) Pr[ZT = −a] + bPr[ZT = b] + αE[T ] = Q0 = 0. From above, we have
already calculated Pr[ZT = −a], and so we can just plug in that expression and solve, yielding

E[T ] =
(−a) Pr[ZT = −a] + bPr[ZT = b]

−α
=

(−a) 1−cb
c−a−cb + b(1− 1−cb

c−a−cb )

2p− 1
.

While this expression for E[T ] is exact, it is hard to parse. Figure 1 depicts this function in the
case that that a = b, illustrating the fact that when p = 1/2, E[T ] = a2, whereas as p approaches 1,
or 0, this time approaches a. Unsurprisingly, even for p that is fairly close to 1/2, the bias is strong
enough that E[T ] is essentially linear in a, as opposed to quadratic.

Note: At this point we are done with the material for the before-class minilectures. The
stuff after this point is for reference after class.
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Figure 1: Illustration of E[T ] for the case that a = b = 20, and a = b = 100 as the bias p ranges
from 0 to 1, illustrating that the expected time rapidly changes from quadratic in a to linear, as the
bias deviates from 1/2.

3 The Ballot Counting Theorem
One famous application of the Martingale Stopping Theorem is the following surprisingly crisp
theorem, capturing the process of tallying a set of votes.

Theorem 4. Suppose we have a set of n votes, with each vote being for either candidate A or B.
Lett NA, NB = n−NA denote the respective number of votes for each of the candidates. Assuming
NA > NB, if the votes are tallied in a random order the probability that candidate A is ahead at all
timesteps during the vote count is NA−NB

NA+NB
.

There is a purely combinatorial proof of the above theorem that analyzes the fraction of the n!
orderings in which the votes are counted, which respect the constraint that the partial tallies all have
A ahead of B. Instead of the combinatorial proof, we will instead give a proof via martingales.

Proof. Let Xt denote the difference between the number of votes for candidate A versus for B after
t total votes have been tallied. Now consider the sequence {Zt} defined by Zt =

Xn−t

n−t which counts
“backwards” from the final count. In particular, Z0 =

NA−NB

n
.

We claim that {Zt} is a martingale (with respect to itself). Before proving this statement, we
first finish the proof of the theorem assuming that the Zt’s form a martingale.

We define the stopping time T to be the smallest t for which Zt = 0 if such a t exists, and
otherwise set T = n − 1. Because there are just a finite number of terms, the stopping theorem
holds, hence E[ZT ] = E[Z0] =

NA−NB

n
.

There are two cases:

• Suppose that candidate A is always ahead. Then T = n− 1, and we have

ZT =
X1

1
= 1,

since X1 = 1− 0 = 1. (Here we are using the fact that A was always ahead, so it must be that
the the first vote counted was for A too).

• If A was not always ahead in the count, then T < n− 1 and by definition ZT = 0.
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Hence letting p denote Pr[A always ahead], we have that

E[ZT ] = 1 · p+ 0 · (1− p) = NA −NB

n
,

where the second equality is from the martingale stopping theorem. Solving for p yields the theorem.
To finish the proof, we simply need to establish the {Zt} is, in fact, a martingale. This is simply

a calculation, leveraging our definition of Zt. To compute E[Zt|Z0, . . . , Zt−1], recall that Zt−1(n −
t + 1) = Xn−t+1 is the difference between the number of votes for A and B after n − t + 1 votes
have been counted. Hence, of these votes, α = n−t+1+Xn−t+1

2
were for A and β = n−t+1−Xn−t+1

2

were for B. Since the sequence {Zt} is tallying the votes “backwards”, with probability α/(α+ β),
the n− tth vote counted was for A and with the remaining probability, it was for B. Hence

E[Zt|Z0, . . . , Zt−1] =
Xn−t+1 + 1

n− t

(
n−t+1+Xn−t+1

2

n− t+ 1

)
+
Xn−t+1 − 1

n− t

(
n−t+1−Xn−t+1

2

n− t+ 1

)
.

=
Xn−t+1

n− t
+

Xn−t+1

(n− t)(n− t+ 1)
=

Xn−(t−1)

n− (t− 1)
= Zt−1.
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