Class 19

Extractors and Expanders

Warm-up

- Say that X is a k-source on $\{0,1\}^n$. Let $N = 2^n$.
- Let $\sigma \in \mathbb{R}^N$ correspond to the pmf for X.
- 1. Why is $\|\sigma\|_{\infty} \leq 2^{-k}$?
- 2. Argue that $\|\sigma\|_2 \leq 2^{-k/2}$.
	- Hint: $||x||_2^2 \le ||x||_{\infty} ||x||_1$

Announcements

- Welcome to week 10!!!
- HW8 due Friday.
- Practice exam is out now. (With solutions).
	- We hope it's about the same difficulty as the real final, although TBH I think it's not as "good" an exam as the real final... (good exams are hard to write).
- Today:
	- Pseudorandomness! Not on the exam.
- Thursday:
	- Research talks! Also not on the exam.
- EXAM: Thursday 12/15, 12:15-3:15pm, Room 420-040.

Pseudorandomness

- Deterministic (or not-so-random) objects that behave like random ones.
- Useful for derandomization.

Expanders

- Let $G = (V, E)$ be an unweighted, undirected, regular graph with degree D and with N vertices.
- Let A be the normalized adjacency matrix of G .
- Say that the eigenvalues of A are $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_N$
- The **expansion** of A is $\lambda(G) = \max\{\lambda_2, |\lambda_n|\}$

Theorem:

- Let $\{X_t\}$ be a random walk on $G = (V, E)$.
- The stationary distribution of $\{X_t\}$ is π = uniform on V.
- If $\lambda(G)$ < 0.99, then $\tau_{mix} = O(\log n)$

Questions?

Minilectures, Warm-up?

Warm-up:

- Say that X is a k-source on $\{0,1\}^n$. Let $N = 2^n$.
- Let $\sigma \in \mathbb{R}^N$ correspond to the pmf for X.
- Why is $\|\sigma\|_{\infty} \leq 2^{-k}$? $1.$
- Argue that $\|\sigma\|_2 \leq 2^{-k/2}$. $2.$
	- Hint: $||x||_2^2 \le ||x||_{\infty} ||x||_1$

δ : = $\mathbb{P}[X =$ i], $\forall i \in \{0,...,N-1\}$ (or, the binary expansion of i.

Warm-Up

- Say that X is a k-source on $\{0,1\}^n$
- Let $N = 2^n$, and let σ be the "vectorized" version of the distribution of X
- 1. Why is $\|\sigma\|_{\infty} \leq 2^{-k}$?

$S_i = P[X = i], \forall i \in \{0, ..., N-1\}$ Cor, the binary expansion of i.

Warm-Up

- Say that X is a k-source on $\{0,1\}^n$
- Let $N = 2^n$, and let σ be the "vectorized" version of the distribution of X
- 2. Argue that $\|\sigma\|_2 \leq 2^{-k/2}$.

δ : = $\mathbb{P}[X =$ i], $\forall i \in \{0,...,N-1\}$ $\mathcal{\vec{C}}$ or, the binary expansion of i.

• Say that X is a k-source on $\{0,1\}^n$

Warm-Up

• Let $N = 2^n$, and let σ be the "vectorized" version of the distribution of X

$$
6. = \mathbb{P}[\begin{array}{c} X = i \\ X \end{array}]
$$

1-Up
it X is a k-source on {0,1}ⁿ
= 2ⁿ, and let σ be the "vectorized" version of the c
Then $|| \sigma ||_{\infty} \leq \mathcal{X}^{-k}$, by def of k-source :
 $||f_{\infty}(x) \leq \mathcal{Z}^{-k}$

N arm-Un

$$
\sigma_{z} = \mathbb{P}[\begin{bmatrix} X & -i \end{bmatrix}, \quad \forall i \in \{0, ..., N-1\}
$$

\n
$$
\sigma_{c}
$$
, the binary expansion of i .
\n• Say that X is a k-source on $\{0,1\}^n$
\n• Let $N = 2^n$, and let σ be the "vectorized" version of the distribution of X

- Say that X is a k-source on $\{0,1\}^n$
- Warm-Up

Say that X is a k-source on $\{0,1\}^n$

Let $N = 2^n$, and let σ be the "vectorized" version
 $\frac{1}{2}$ Varm-Up
Say that X is a k-source on $\{0,1\}^n$
Let $N = 2^n$, and let σ be the "vectorized" version Varm-Up
Say that X is a k-source on $\{0,1\}^n$
Let $N = 2^n$, and let σ be the "vectorized" version ,
ectorized" version of the distributior e binary exp

$$
\delta_{\epsilon} = \mathbb{P}[X = i], \quad \forall i \in \{0, ..., N\}
$$

\n**Warm-Up**
\n• Say that X is a k-source on $\{0,1\}^n$
\n• Let $N = 2^n$, and let σ be the "vectorized" version of the distribution of X
\n
$$
\|\sigma\|_{a} = \left(\sum_{i \in [N]} \sigma_i^2\right)^{1/a} \le \|\sigma\|_{\infty}^{\frac{V_2}{\sigma}} \left(\sum_{i \in [N]} \sigma_i^2\right)^{1/a} = \|\sigma\|_{\infty}^{\frac{V_2}{\sigma}} \le 2^{-k/a}
$$

• We will consider a way to make an extractor out of an expander graph.

- We will consider a way to make an extractor out of an expander graph.
- Recall: An extractor looks like this:

Today

- We will consider a way to make an extractor out of an expander graph.
- Recall: An expander graph looks like this:

Degree D graph with N vertices

Normalized adjacency matrix $A \in \mathbb{R}^{N \times N}$

This is $\frac{1}{D}$ times the standard adjacency matrix.

- The eigenvalues of A are $1 = \lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_N$
- The expansion is $\lambda(G) = \max\{\lambda_2, |\lambda_n|\}$
- For an expander, $\lambda(G)$ is decently less than 1.

 $N = 2^n$, and choose $k \le n$ and $\epsilon > 0$ Let $d = \ell \cdot \log(D)$, where $\ell = \frac{n-k}{2} + \log(\frac{1}{\epsilon})$

G = Degree D graph with N vertices

• Associate each vertex of G with a string in $\{0,1\}^n$

 $N = 2^n$, and choose $k \le n$ and $\epsilon > 0$ Let $d = \ell \cdot \log(D)$, where $\ell = \frac{n-k}{2}$ & $+\log(\frac{1}{2})$ ϵ

G =Degree D graph with N vertices

- Associate each vertex of G with a string in $\{0,1\}^n$
- Take a random walk on G, starting from $x \sim X$, and following a random walk given by the seed $s \sim U_d$.

G =Degree D graph with N vertices

- Associate each vertex of G with a string in $\{0,1\}^n$
- Take a random walk on G, starting from $x \sim X$, and following a random walk given by the seed $s \sim U_d$.

G =Degree D graph with N vertices

- Associate each vertex of G with a string in $\{0,1\}^n$
- Take a random walk on G, starting from $x \sim X$, and following a random walk given by the seed $s \sim U_d$.

- The source $x \sim X$ tells us a vertex to start at.
- For each step $1, 2, ..., \ell$, that chunk of the seed tells us what our next step should be.
- Output the label on the vertex where we are after ℓ steps.

Claim

- If we choose $\ell =$ $n - k$ & $+\log(\frac{1}{2})$ ϵ , then this is a (k, ϵ) -extractor.
	- Seed length: $d = \ell \cdot \log(D) = O(\ell)$
	- Output length: n

This is not as good as our existential result, since the seed length is really long unless k is quite large, but it's still non-trivial! This is pretty good when $k = n - \log n$, for example.

[Backup slide] Comparison to optimal

 $-vs$

•
$$
\ell = \frac{n-k}{2} + \log\left(\frac{1}{\epsilon}\right)
$$

- Seed length $d = \ell \cdot \log(D) = O\left(\frac{n-k}{2}\right)$ & $+\log(\frac{1}{2})$ @
- Output length: n

The seed length is much longer than we'd like unless k is big. However, the output length in that case is pretty good: ideally it wouldn't be much smaller than $k + d$ (the total amount of randomness going in), so it's the right order of magnitude.

- Seed length $d = k + d 2 \log \left(\frac{1}{e} \right)$ $\frac{1}{\epsilon}$) – $O(1)$
- Output length: $\log(n-k) + 2 \log(1/\epsilon) + O(1)$

Group Work: prove the claim!

• If we choose
$$
\ell = \frac{n-k}{2} + \log(\frac{1}{\epsilon})
$$
, then
this is a (k, ϵ) -extractor.

- Seed length: $d = \ell \cdot \log(D) = O(\ell)$
- Output length: n

- 1. Let $\sigma \in \mathbb{R}^n$ represent the probability mass function of our input X. Explain why $Ext(X, U_d) \sim A^{\ell} \cdot \sigma$, where A is the normalized adjacency matrix for G.
- 2. Let $\pi =$ (\overline{N} 1 correspond to the uniform distribution. Explain why $U_n - Ext(X, U_d) \Vert_{TV} = \left\| \pi - A^{\ell} \cdot \sigma \right\|_{TV} \leq \frac{\sqrt{N}}{2}$ $\lambda(G)^{\ell} \|\pi-\sigma\|_2$
- 3. Argue that $\|\pi \sigma\|_2 \leq 2 \cdot 2^{-k/2}$
- 4. Conclude that $||U_n Ext(X, U_d)||_{TV} \leq \epsilon$, which means that Ext is a (k, ϵ) -extractor.

Solutions

1. Why is $Ext(X, U_d) \sim A^{\ell} \cdot \sigma$

1. Why is $Ext(X, U_d) \sim A^{\ell} \cdot \sigma$

- By definition, σ is the distribution of X, the starting distribution for our random walk.
- The normalized adjacency matrix \vec{A} is the transition matrix for the random walk on G .
- Since U_d is uniformly random, we just take an ℓ -step random walk on G starting from the distribution σ to get the output of Ext.
- The distribution of that is $A^{\ell} \cdot \sigma$, as we saw before when we studied Markov chains.

2. Bounding $||U_n - Ext(X, U_d)||$

- Let $Y = Ext(X, U_d)$
- Let π be the uniform distribution.

 $|| \mathcal{U}_n - \mathcal{Y} ||_{\tau v} = \frac{1}{2} || \pi - A^2 \sigma ||_1$

2. Bounding $||U_n - Ext(X, U_d)||$ ⇐ 2. Bounding $||U_n - Ext(X, U_d)||$ A_0^2 $\|$ $\frac{1}{4}$ $\sum_{i=1}^n$ and $\sum_{i=1}^n$ (so $\sum_{i=1}^n$ Let o be the distribution of X (so 11011ns

- Let $Y = Ext(X, U_d)$
- Let π be the uniform distribution.

$$
\|\Upsilon_{n}-\Upsilon\|_{TV}=\frac{1}{2}\|\Pi-A^{2}_{0}\Upsilon\|_{1}
$$

$$
\|\mathsf{T} - \mathsf{A}^{\ell} \cdot \sigma\|_{\mathsf{A}} = \|\mathsf{A}^{\ell}(\mathsf{T} - \sigma)\|_{\mathsf{A}}
$$
\n
$$
\leq \|\mathsf{A}^{\ell}(\mathsf{T} - \sigma)\|_{\mathsf{A}}
$$
\n
$$
\leq \|\mathsf{A}^{\ell}(\mathsf{T} - \sigma)\|_{\mathsf{A}}
$$
\n
$$
\text{Cauchy-Schwa}
$$

$$
f_{\rm{max}}
$$

auchy-Schwarz

$$
\leq \sqrt{N} \lambda(G)^{2} \parallel T - \sigma \parallel_{2}
$$

Since $\pi - \sigma \perp \pi$, and π is the top eigenvector.

3. Bounding $||\pi - \sigma||_2$

$\|\pi-\sigma\|_{2} \leq \|\pi\|_{2} + \|\sigma\|_{2}$

3. Bounding $||\pi - \sigma||_2$ de la construction de la constructio
De la construction de la construc \overline{a} , \overline{b} **bunding** - π – σ

$$
\|\pi - \sigma\|_{2} \leq \|\pi\|_{2} + \|\sigma\|_{2} \leq 2^{-n/2} + 2^{-k/2} \leq 2^{-\frac{k}{2}+1}
$$

$$
\|\pi\|_2 = \left(\sum_{x \in \{0,1\}^n} 4/2^{2n}\right)^{1/2} = 2^{-n/2}
$$

 \mathbf{u} $k/2$ Marn $\frac{1}{6}$ old $\frac{1}{3}$ $2 - k/2$ $\|\sigma\|_{2}$ $|| 6||_2 \leq 2^{-k/2}$ w. $-k/2$

Warmur ⁼ Holl (Exe go.sn 1.110 p - D Warmup!

4. Ext is a (k, ϵ) -extractor $||U_n - Y||_{TV} \leq \epsilon$?

- Let $Y = Ext(X, U_d)$
- Let π be the uniform distribution.

We know:

- $||U_n Y||_{TV} \leq \frac{\sqrt{N}}{2} \cdot \lambda(G)^{\ell} \cdot ||\pi \sigma||_2$
- $||\pi \sigma||_2 \leq 2 \cdot 2^{-\frac{k}{2}}$
- $\ell = \frac{n-k}{2}$) $+\log\left(\frac{1}{2}\right)$ ϵ
- $\lambda(G) \leq \frac{1}{2}$)

4. Ext is a
$$
(k, \epsilon)
$$
-extraction
\n
$$
\|u_n - Y\|_{TV} \le \sqrt{N} \cdot \chi(\epsilon)^{l} \cdot \vartheta^{-k/2} \le 2^{\frac{n-k}{2}} \cdot (\frac{1}{2})^{l}
$$
\n
$$
\sqrt{1 - \vartheta} \cdot \chi(\epsilon) \le \sqrt{N} \cdot \chi(\epsilon) \le \sqrt{N}
$$
\n
$$
\ell = \frac{n-k}{2} + \log(\ell_{\epsilon})
$$

• Let $Y = Ext(X, U_d)$

let $Y = Ext(X,$

E T

$$
= 2^{\frac{n-k}{2}} \cdot 2^{-\left(\frac{n-k}{2} + \log(\frac{1}{\epsilon})\right)} = 2^{-\log(\frac{1}{\epsilon})} = \epsilon
$$

Hooray!

- So Ext is a (k, ϵ) extractor.
- It's a pretty good one when $k = n - O(\log n)$, say.
	- In that case the seed length is $O\left(\log\left(\frac{n}{e}\right)\right)$ ϵ
- Why do we care? If k is large (as above), then we can actually just exhaust over the seeds! We don't need true randomness!

Recap

- We can use a good spectral expander to get an okay extractor.
- This extractor is pretty good when k is large!