Class 19

Extractors and Expanders

Warm-up

- Say that X is a k-source on $\{0,1\}^n$. Let $N = 2^n$.
- Let $\sigma \in \mathbb{R}^N$ correspond to the pmf for *X*.
- 1. Why is $\|\sigma\|_{\infty} \le 2^{-k}$?
- 2. Argue that $\|\sigma\|_2 \le 2^{-k/2}$.
 - Hint: $||x||_2^2 \le ||x||_{\infty} ||x||_1$

Announcements

- Welcome to week 10!!!
- HW8 due Friday.
- Practice exam is out now. (With solutions).
 - We hope it's about the same difficulty as the real final, although TBH I think it's not as "good" an exam as the real final... (good exams are hard to write).
- Today:
 - Pseudorandomness! Not on the exam.
- Thursday:
 - Research talks! Also not on the exam.
- EXAM: Thursday 12/15, 12:15-3:15pm, Room 420-040.

Pseudorandomness

- Deterministic (or not-so-random) objects that behave like random ones.
- Useful for derandomization.

Expanders

- Let G = (V, E) be an unweighted, undirected, regular graph with degree D and with N vertices.
- Let A be the normalized adjacency matrix of G.
- Say that the eigenvalues of A are $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_N$
- The **expansion** of A is $\lambda(G) = \max\{\lambda_2, |\lambda_n|\}$

Theorem:

- Let $\{X_t\}$ be a random walk on G = (V, E).
- The stationary distribution of $\{X_t\}$ is π = uniform on V.
- If $\lambda(G) < 0.99$, then $\tau_{mix} = O(\log n)$

Questions?

Minilectures, Warm-up?

Warm-up:

- Say that X is a k-source on $\{0,1\}^n$. Let $N = 2^n$.
- Let $\sigma \in \mathbb{R}^N$ correspond to the pmf for *X*.
- 1. Why is $\|\sigma\|_{\infty} \leq 2^{-k}$?
- 2. Argue that $\|\sigma\|_2 \le 2^{-k/2}$.
 - Hint: $||x||_2^2 \le ||x||_{\infty} ||x||_1$

$\begin{aligned} & \mathcal{S}_{i} = \mathbb{P}[X = i], \quad \forall i \in \{0, \dots, N-1\} \\ & \mathcal{C}_{or}, \text{ the binary expansion of } i. \end{aligned}$

- Say that X is a k-source on $\{0,1\}^n$
- Let $N = 2^n$, and let σ be the "vectorized" version of the distribution of X
- 1. Why is $\|\sigma\|_{\infty} \le 2^{-k}$?

$\delta_i = \mathbb{P}[X = i], \quad \forall i \in \{0, ..., N-1\}$ Cor, the binary expansion of i.

- Say that X is a k-source on $\{0,1\}^n$
- Let $N = 2^n$, and let σ be the "vectorized" version of the distribution of X
- 2. Argue that $\|\sigma\|_2 \le 2^{-k/2}$.

- Say that X is a k-source on $\{0,1\}^n$
- Let $N = 2^n$, and let σ be the "vectorized" version of the distribution of X

Then
$$\|\sigma\|_{\infty} \leq 2^{-k}$$
, by def of k -source:
 $H_{\infty}(x) \leq 2^{-k}$
 $pmf of X = \sigma$

$$\begin{aligned} & \delta_i = \mathbb{P}[X = i], \quad \forall i \in \{0, \dots, N-1\} \\ & C_{or}, \text{ the binary expansion of } i. \end{aligned}$$

- Say that X is a k-source on $\{0,1\}^n$
- Let $N = 2^n$, and let σ be the "vectorized" version of the distribution of X

$$\| \sigma \|_{2} = \left(\sum_{i \in [N]} \sigma_{i}^{2} \right)^{1/2} \leq \| \sigma \|_{\infty}^{1/2} \left(\sum_{i \in [N]} \sigma_{i}^{1/2} \right)^{1/2} = \| \sigma \|_{\infty}^{1/2} \leq 2^{-k/2}$$

• We will consider a way to make an extractor out of an expander graph.

- We will consider a way to make an extractor out of an expander graph.
- Recall: An extractor looks like this:

Today

- We will consider a way to make an extractor out of an expander graph.
- Recall: An expander graph looks like this:

Degree D graph with N vertices

Normalized adjacency matrix $A \in \mathbb{R}^{N \times N}$ This is $\frac{1}{D}$ times the standard adjacency matrix.

- The eigenvalues of A are $1 = \lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_N$
- The expansion is $\lambda(G) = \max{\{\lambda_2, |\lambda_n|\}}$
- For an expander, $\lambda(G)$ is decently less than 1.

$$N = 2^n$$
, and choose $k \le n$ and $\epsilon > 0$
Let $d = \ell \cdot \log(D)$, where $\ell = \frac{n-k}{2} + \log\left(\frac{1}{\epsilon}\right)$

G =Degree D graph with N vertices

• Associate each vertex of G with a string in $\{0,1\}^n$

 $N = 2^n$, and choose $k \le n$ and $\epsilon > 0$ Let $d = \ell \cdot \log(D)$, where $\ell = \frac{n-k}{2} + \log\left(\frac{1}{\epsilon}\right)$

G =Degree D graph with N vertices

- Associate each vertex of G with a string in $\{0,1\}^n$
- Take a random walk on G, starting from $x \sim X$, and following a random walk given by the seed $s \sim U_d$.

G =Degree D graph with N vertices

- Associate each vertex of G with a string in $\{0,1\}^n$
- Take a random walk on G, starting from $x \sim X$, and following a random walk given by the seed $s \sim U_d$.

G =Degree D graph with N vertices

- Associate each vertex of G with a string in $\{0,1\}^n$
- Take a random walk on G, starting from $x \sim X$, and following a random walk given by the seed $s \sim U_d$.

- The source $x \sim X$ tells us a vertex to start at.
- For each step 1,2, ..., ℓ, that chunk of the seed tells us what our next step should be.
- Output the label on the vertex where we are after ℓ steps.

Claim

- If we choose $\ell = \frac{n-k}{2} + \log\left(\frac{1}{\epsilon}\right)$, then this is a (k, ϵ) -extractor.
 - Seed length: $d = \ell \cdot \log(D) = O(\ell)$
 - Output length: *n*

This is not as good as our existential result, since the seed length is really long unless k is quite large, but it's still non-trivial! This is pretty good when $k = n - \log n$, for example.

[Backup slide] Comparison to optimal

-VS-

•
$$\ell = \frac{n-k}{2} + \log\left(\frac{1}{\epsilon}\right)$$

- Seed length $d = \ell \cdot \log(D) = O\left(\frac{n-k}{2} + \log\left(\frac{1}{\epsilon}\right)\right)$
- Output length: *n*

The seed length is much longer than we'd like unless k is big. However, the output length in that case is pretty good: ideally it wouldn't be much smaller than k + d (the total amount of randomness going in), so it's the right order of magnitude.

- Seed length $d = k + d 2\log\left(\frac{1}{\epsilon}\right) O(1)$
- Output length: $\log(n k) + 2\log(1/\epsilon) + O(1)$

Group Work: prove the claim!

• If we choose
$$\ell = \frac{n-k}{2} + \log\left(\frac{1}{\epsilon}\right)$$
, then this is a (k, ϵ) -extractor.

- Seed length: $d = \ell \cdot \log(D) = O(\ell)$
- Output length: *n*

- 1. Let $\sigma \in \mathbb{R}^n$ represent the probability mass function of our input X. Explain why $Ext(X, U_d) \sim A^{\ell} \cdot \sigma$, where A is the normalized adjacency matrix for G.
- 2. Let $\pi = \frac{1}{N} \mathbf{1}$ correspond to the uniform distribution. Explain why $\|U_n Ext(X, U_d)\|_{TV} = \|\pi A^\ell \cdot \sigma\|_{TV} \le \frac{\sqrt{N}}{2} \lambda(G)^\ell \|\pi \sigma\|_2$
- 3. Argue that $\|\pi \sigma\|_2 \le 2 \cdot 2^{-k/2}$
- 4. Conclude that $||U_n Ext(X, U_d)||_{TV} \le \epsilon$, which means that Ext is a (k, ϵ) -extractor.

Solutions

1. Why is $Ext(X, U_d) \sim A^{\ell} \cdot \sigma$

1. Why is $Ext(X, U_d) \sim A^{\ell} \cdot \sigma$

- By definition, σ is the distribution of X, the starting distribution for our random walk.
- The normalized adjacency matrix A is the transition matrix for the random walk on G.
- Since U_d is uniformly random, we just take an ℓ -step random walk on G starting from the distribution σ to get the output of Ext.
- The distribution of that is $A^{\ell} \cdot \sigma$, as we saw before when we studied Markov chains.

2. Bounding $||U_n - Ext(X, U_d)||$

- Let $Y = Ext(X, U_d)$
- Let π be the uniform distribution.

 $\|\mathcal{U}_n - \Upsilon\|_{\mathcal{T}_{\mathcal{V}}} = \frac{1}{2} \|\mathcal{T} - A^{\delta}_{\mathcal{O}}\|_{1}$

2. Bounding $||U_n - Ext(X, U_d)||$

- Let $Y = Ext(X, U_d)$
- Let π be the uniform distribution.

$$\|\mathcal{U}_n - \Upsilon\|_{\mathcal{T}_{\mathcal{V}}} = \frac{1}{2} \|\mathcal{T} - A^{\mathcal{S}}_{\mathcal{O}}\|_{1}$$

$$\| \Pi - A^{\ell} \cdot \sigma \|_{1}^{\ell} = \| A^{\ell} (\pi - \sigma) \|_{1}^{\ell}$$

$$\leq \int_{N} \| A^{\ell} (\pi - \sigma) \|_{2}^{\ell}$$

Since $A\pi = \pi$

Cauchy-Schwarz

$$\leq \sqrt{N} \lambda(G)^{\ell} \| \pi - \sigma \|_{2}$$

Since $\pi - \sigma \perp \pi$, and π is the top eigenvector.

3. Bounding $||\pi - \sigma||_2$

$\| \Pi - \sigma \|_{2} \leq \| \Pi \|_{2} + \| \sigma \|_{2}$

3. Bounding $||\pi - \sigma||_2$

$$\| \Pi - \sigma \|_{2} \leq \| \Pi \|_{2} + \| \sigma \|_{2} \leq 2^{-n/2} + 2^{-k/2} \leq 2^{-\frac{k}{2}+1}$$

$$\| T T \|_{2} = \left(\sum_{\substack{\chi \in \{0, 13^{n}\}}}^{1} \frac{1}{2^{2n}} \right)^{1/2} = 2^{-n/2}$$

 $||\delta||_2 \le 2^{-k/2}$

Warmup!

4. Ext is a (k, ϵ) -extractor $||U_n - Y||_{TV} \le \epsilon$?

- Let $Y = Ext(X, U_d)$
- Let π be the uniform distribution.

We know:

- $||U_n Y||_{TV} \le \frac{\sqrt{N}}{2} \cdot \lambda(G)^\ell \cdot ||\pi \sigma||_2$
- $\|\pi \sigma\|_2 \le 2 \cdot 2^{-\frac{k}{2}}$
- $\ell = \frac{n-k}{2} + \log\left(\frac{1}{\epsilon}\right)$
- $\lambda(G) \leq \frac{1}{2}$

4. Ext is a
$$(k, \epsilon)$$
-extractor

$$\|\mathcal{M}_{n} - \Upsilon\|_{TV} \leq \|\nabla^{-} \chi(q)\|_{\mathcal{N}} + 2^{-k/2} \leq 2^{\frac{n-k}{2}} \cdot \left(\frac{1}{2}\right)^{k}$$

$$\|\mathcal{M}_{n} - \Upsilon\|_{TV} \leq \|\nabla^{-} \chi(q)\|_{\mathcal{N}} + 2^{-k/2} \leq 2^{\frac{n-k}{2}} \cdot \left(\frac{1}{2}\right)^{k}$$

$$\|\mathcal{M}_{n} - \Upsilon\|_{TV} \leq \|\nabla^{-} \chi(q)\|_{\mathcal{N}} + 2^{-k/2} \leq 2^{\frac{n-k}{2}} \cdot \left(\frac{1}{2}\right)^{k}$$

$$\|\mathcal{M}_{n} - \Upsilon\|_{TV} \leq \|\nabla^{-} \chi(q)\|_{\mathcal{N}} + 2^{-k/2} \leq 2^{\frac{n-k}{2}} \cdot \left(\frac{1}{2}\right)^{k}$$

$$\|\mathcal{M}_{n} - \Upsilon\|_{TV} \leq \|\nabla^{-} \chi(q)\|_{\mathcal{N}} + 2^{-k/2} \leq 2^{\frac{n-k}{2}} \cdot \left(\frac{1}{2}\right)^{k}$$

$$\|\mathcal{M}_{n} - \Upsilon\|_{TV} \leq \|\nabla^{-} \chi(q)\|_{\mathcal{N}} + 2^{-k/2} \leq 2^{\frac{n-k}{2}} \cdot \left(\frac{1}{2}\right)^{k}$$

• Let $Y = Ext(X, U_d)$

$$= 2^{\frac{n-k}{2}} \cdot 2^{-\binom{n-k}{2} + \log(\frac{1}{2})} = 2^{-\log(\frac{1}{2})} = \epsilon$$

Hooray!

- So Ext is a (k, ϵ) extractor.
- It's a pretty good one when $k = n O(\log n)$, say.
 - In that case the seed length is $O\left(\log\left(\frac{n}{\epsilon}\right)\right)$
- Why do we care? If k is large (as above), then we can actually just exhaust over the seeds! We don't need true randomness!

Recap

- We can use a good spectral expander to get an okay extractor.
- This extractor is pretty good when k is large!