Class 18: Agenda and Questions

1 Warm-Up

Suppose that X is a k-source on $\{0,1\}^n$. Let $N = 2^n$. Let $\sigma \in \mathbb{R}^N$ be the "vectorized" version of the pmf of X . That is,

$$
\sigma_i = \Pr[X = i] \qquad \forall i \in \{0, \dots, N - 1\},\
$$

where we associate a number $i < N$ with its binary expansion in $\{0, 1\}^n$.

- 1. Why is $\|\sigma\|_{\infty} \leq 2^{-k}$?
- 2. Argue that $\|\sigma\|_2 \leq 2^{-k/2}$. **Hint**: Use the fact that for any vector x, $||x||_2^2 \le ||x||_{\infty} ||x||_1$ (why is this true?).

2 Announcements

- HW8 (THE LAST ONE!) is out now, due Friday!
- Thursday will be research talks! No mini-lectures to watch.
- FINAL EXAM: Thursday 12/15, 12:15-3:15pm, Room 420-040.
	- Practice exam out soon.

3 Questions?

Any questions from the minilectures and/or the quiz and/or the warm-up? (Expanders, extractors?)

4 Recap

Recall the definition of a (k, ε) -extractor:

Definition 1. A function $Ext : \{0,1\}^n \times \{0,1\}^d \rightarrow \{0,1\}^m$ is a (k,ε) extractor if, for all k-sources X on $\{0,1\}^n$, $\|\text{Ext}(X, U_d) - U_m\| \leq \varepsilon$.

Above, $\|\cdot\|$ is the total variation distance, and U_d refers to the uniform distribution on d bits.

Suppose that $G = (V, E)$ is an (undirected, unweighted) degree-D expander graph with $|V| = N$, and with expansion parameters $\lambda(G) \leq 1/2$. Recall that

$$
\lambda(G) = \max\{\lambda_2, |\lambda_N|\},\
$$

where $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_N$ are the eigenvalues of A, where A is the normalized adjacency *matrix* of G. (aka, A_{ij} is $1/D$ if $\{i, j\} \in E$ and is zero otherwise).

5 Extractors from expanders

At this point, there will be some slides illustrating a construction of an extractor. A description is below for reference.

Let $\varepsilon > 0$. Let $N = 2^n$ and fix some arbitrary bijection between $\{0, 1\}^n$ and V, where V is the vertex set of G above. Fix any $k \leq n$. Let $d = \log(D) \cdot \ell$, where

$$
\ell = (n - k)/2 + \log(1/\varepsilon),
$$

Consider the following function $\text{Ext}: \{0,1\}^n \times \{0,1\}^d \to \{0,1\}^n$. On input $x, s \in \{0, 1\}^n \times \{0, 1\}^d$:

- Treat $x \in \{0,1\}^n$ as an element of V.
- Treat $s \in \{0,1\}^d$ as a string of ℓ numbers in $\{0, 1, \ldots, D\}$. (That is, break up s into ℓ chunks, each $log(D)$ bits long). Say these numbers are a_1, a_2, \ldots, a_ℓ .
- Consider the following walk on G: let $x^{(0)} = x$. For $i = 1, 2, ..., \ell$, get from $x^{(i-1)}$ to $x^{(i)}$ by choosing the a_i 'th neighbor of $x^{(i-1)}$.
- output $x^{(\ell)} \in V$, which we treat as an element of $\{0,1\}^n$.

That is, we use the source x to tell us where to start a walk, we use the seed s to tell us how to take a random walk (notice that if $s \sim U_d$ is uniform, then we really are taking a random walk), and after we've walked ℓ steps, we output whatever vertex we happen to be on.

6 Group work: this is a good extractor!

In this section, you'll show that Ext is a (k, ε) extractor.

Group Work

.

1. Let σ be the "vectorized" pmf of X (as in the warm-up). Explain why the distribution of $\textsf{Ext}(X, U_d)$ is given by $A^{\ell} \cdot \sigma$. (Recall that A is the normalized adjacency matrix of G).

2. Let $\pi = \frac{1}{N}$ $\frac{1}{N}$ be the vector that corresponds to the uniform distribution. Explain why √

$$
||U_n - \mathsf{Ext}(X, U_d)|| = ||\pi - A^{\ell} \cdot \sigma|| \le \frac{\sqrt{N}}{2} \lambda(G)^{\ell} ||\pi - \sigma||_2.
$$

Hint: Mimic a computation that we did in the Expanders minilecture to show that random walks mix quickly when $\lambda(G)$ is small.

- 3. Argue that $\|\pi \sigma\|_2 \leq 2 \cdot 2^{-k/2}$. **Hint**: By the triangle inequality, $\|\pi-\sigma\|_2 \le \|\pi\|_2+\|\sigma\|_2$. **Hint**: Use the warm-up!
- 4. Assume that G is a good enough expander that $\lambda(G) \leq 1/2$. (It turns out that these exist for large enough degrees D). Conclude that $||U_n - \text{Ext}(X, U_d)|| \leq \varepsilon$ and thus Ext is a (k, ε) extractor.

Group Work: Solutions

1. To see why $Ext(X, U_d) \sim A^{\ell} \sigma$, notice that by definition, $Ext(X, U_d)$ is the outcome of ℓ steps of a uniformly random walk on G, if we start from the distribution X on the vertices of G. As we saw in the Markov chain unit, this is given by $A^{\ell}\sigma$.

(Notice that I've switched from left-multiplying to right-multiplying. In general it doesn't matter as long as we're consistent, but in this case it really doesn't matter since A is symmetric).

2. To bound $||U_n - Ext(X, U_d)||_{TV}$, we first note that

$$
||U_n - Y||_{TV} = \frac{1}{2} ||\pi - A^{\ell}\sigma||_1
$$

by the def. of total variation distance. Then we can write

$$
\|\pi - A^{\ell}\sigma\|_{1} = \|A^{\ell}(\pi - \sigma)\|_{1} \quad \text{since } A\pi = \pi
$$

\n
$$
\leq \sqrt{N} \|A^{\ell}(\pi - \sigma)\|_{2} \quad \text{Cauchy-Schwarz}
$$

\n
$$
\leq \sqrt{N}\lambda(G)^{\ell} \|\pi - \sigma\|_{2}
$$

where the last line follows since $(\pi - \sigma) \perp \pi$ and π is the top eigenvector of A. To see that $(\pi - \sigma) \perp \pi$, note that

$$
\sum_{i} \pi_i (\pi_i - \sigma_i) = \frac{1}{N} \sum_{i} (\pi_i - \sigma_i) = \frac{1}{N} (\sum_{i} \pi_i - \sum_{i} \sigma_i) = \frac{1}{N} (1 - 1) = 0.
$$

3. Following the hints,

$$
\|\pi - \sigma\|_2 \le \|\pi\|_2 + \|\sigma\|_2
$$

\n
$$
\le 2^{-n/2} + 2^{-k/2}
$$

\n
$$
\le 2^{-k/2+1}
$$

using the warm-up to bound $\|\sigma\|_2$ and the fact that $n \geq k$ in the final line.

4. To show that Ext is a (k, ε) extractor, we need to show that $||U_n-Ext(X, U_d)||_{TV} \le$ ε . To do that, we put together all the pieces:

$$
||U_n - Ext(X, U_d)||_{TV} \le \frac{\sqrt{N}}{2} \lambda(G)^{\ell} ||\pi - \sigma||_2
$$

$$
\le \frac{\sqrt{N}}{2} 2^{-\ell} \cdot 2^{1-k/2}
$$

$$
= 2^{n/2-1} \cdot 2^{-\ell} 2^{1-k/2}
$$

$$
= 2^{(n-k)/2-\ell}
$$

$$
= 2^{\log(1/\varepsilon)}
$$

$$
= \varepsilon,
$$

where we used the choice of $\ell = (n-k)/2 + \log(1/\varepsilon)$ in the final line.