Class 19

THE LAST ONE!!!

Time flies when
you’re having fun!




Plan for today

* Quick recap of the quarter
* Research talks!



What just happened?

* Techniques for analyzing randomized
algorithms!

Linearity of expectation

Markov and Chebyshev

Chernoff bounds

“Poissonization”

Metric embeddings/JL transforms

The probabilistic method
e Second moment method

 LLL

* Derandomization via conditional expectation
Markov chains

* Mixing times and coupling
Martingales

 Azuma-Hoeffding bound

* Martingale stopping theorem
Pseudorandomness

e Algorithms!
* Polynomial identity testing
* Perfect matchings

Karger’s algorithm for minimum cut
Primality testing

Sampling-based median

Randomized routing

Load balancing and the power of 2 choices

Bourgain’s embedding, and an approximate
sparsest-cut algorithm

Locality sensitive hashing
Compressed sensing
Count-min sketch

Deterministic approximation algorithms for
k-SAT, Max-Cut

Algorithmic LLL

Randomized algorithm for 2SAT
MCMC, sampling random colorings
Consensus algorithms

Extractors via expander walks for
derandomizing randomized algorithms



Key take-aways

 Randomness is a powerful tool in computation.
* There’s a lot of beautiful math that goes into analyzing it.

* | hope that now, you:

* Are proficient with some techniques for the analysis of
randomized algorithms.

* Have seen enough examples of using these techniques that you
can use them in your own work/research/life.




A few messages




Thanks to the CAs!

lan




* For all your hard work, great questions, and valuable feedback!



Combinatorial Properties of
Random(ish) Sets

Based on joint works with Ray Li, Venkat Guruswami, Jonathan Mosheiff, Nic Resch, Noga Ron-Zewi, Shashwat Silas, ....



We will define all these

Th|S ta”( |S abOUt terms in just a minute!

* What combinatorial properties are satisfied by random subspaces
over finite fields?

The plan:

* Intro to these
* Why this question is hard

* Some of the approaches we have

\

V' = random k-
dimensional subspace
of F"



Random subspaces and a few
nice properties they might satisty



Random subspaces over finite fields

* A finite field IF is a finite set where you can do arithmetic like
you want to.
e E.g.,, F =T, = {0,1} with arithmetic mod 2.

o V € [F" is a subspace if it’s closed under addition and scalar
multiplication.
* Eg., subspace of IFS of dimension 2:
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* A random subspace is...a (uniformly) random subspace.



Hamming distance between x,y € "
isd(x,y) = [{i:x; # v}

A Question

N\

IV = random k-dimensional
subspace of F"

* What is the closest any two points in VV can be to each other (in Hamming distance)?

* How does this depend on kand n?
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A Question e

IV = random k-dimensional
subspace of F"

* What is the maximum number of points of I/ that lie in any Hamming ball of radius pn?

* How does this depend on kand n?



Why do we care?

* Interesting combinatorial questions!
* They have applications in error correcting codes.

(2 =

“Distance” “List Decoding” “List Recovery”



More questions

also motivated by error correcting codes

* What if we replace the uniformly random subspace with the kernel of
a sparse random matrix?

IV = Ker| 1 ! 1

* What if we replace the uniformly random subspace with the image of
a random Vandermonde matrix?

V' = RowSpan | &1 a; a3 oty




Lots of work on these!
This is not a complete list and the dates might be a bit off...

Uniformly random subspaces: More structured randomized subspaces:
* [Zyablov, Pinsker, 1981] e [Rudra, W., 2014]
* [Elias 1991]  [Rudra, W., 2015]

* [Guruswami, Hastad, Kopparty 2011] * [Mosheiff, Resch, Ron-Zewi, Silas, W., 2020]

* [Cheraghchi, Guruswami, Velingker, 2013]
* [Shangguan, Tamo 2020]

* [W.2013]

- [Rudra, W., 2014] * [Goldberg, Shangguan, Tamo 2021]

e [Rudra, W., 2017] * [Ferber, Kwan, Sauermann 2022]

e [Li, W. 2018] * [Guo, Li, Shangguan, Tamo, W., 2022]
* [Guruswami, Li, Mosheiff, Resch, Silas, W., 2020] * [Guruswami, Mosheiff, 2022]

e [Brakensiek, Gopi, Makam 2022]



Why these questions are hard



Actually, this one’s not hard

Fun exercise!
What should k be, in terms
of n and p, so that no two
points are closer than pn?

T

I/ = random k-dimensional
subspace of F"

* What is the closest any two points in VV can be to each other (in Hamming distance)?



But these are hard

“List Decoding” “List Recovery”



Compare to an easy question

* Instead of a random subspace, consider a uniformly random set.
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What’s the probability that some L points in a
uniformly random set lie in a Hamming ball?

B is this Hamming ball.
Say it has radius pn.

TR L *

Domain of Random
size Zk fur;{ctionn
(p: ]Fz - [FZ ‘




H(p) = plog(%> +(1 —p)log(lip)

Probability that a fixed L pts land in a fixed ball

* Pr[ ¢(x1),...,0(x,) € B ]
. _ (Vol(B))L

21 B is this Hamming ball.
o ~ Z—n(l—H(p))L Say it has radius p - n.
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Probability that a-fee-L pts land in a-ixed ball

e Union bound!

* Pr[ 3xy, ..., x;, B s.t.(xq), ...

. < (ZLk) Lon Z—n(l—H(p))L
. < 2Lk+n—n(1—H(p))L

Pr[ w(x;), .., 0(x;) € B] ~ 27

,¢(x,) € B]

(That turns out to give
the correct answer.)




What goes wrong for a random subspace?

The map ¢: F¥ — F%
is given by:

X

Random matrix o (x)




What goes wrong for a random subspace?
The @(x;) aren’t

* Pr{ o(xy), ..., 0(x;) € B] independent
. _ (Vol(B))L anymore!!
21 The union bound
. ~ 2~ n(1-H({)L will fail ®
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Technigues



ldea 1: Fancy union bounds
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These two bad
events are
correlated!
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ldea 2: Reduction to the random linear case

* It turns out that, e.g.,

IV =Ker| 1 1 1

behaves enough like a completely random matrix that this problem is
not actually harder!

e Proof crucially uses linearity of expectation and the second moment method!



|[dea 3: Connections to graph
theory/combinatorics

e Relevant for

V = RowSpan
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but it’s kind of hard to capture in one slide...

* Attempt:

* if too many vectors in IV agree too much,

* then you can cook up a matrix whose determinant should be zero

Related to the
problem on
HW1 where

we used PIT to
find perfect
matchings!

* but by doing a combinatorial argument about the zero patterns in that matrix
you can show that the determinant is unlikely to be zero.



Conclusion



This talk was about

* Combinatorial properties of random subspaces over finite fields.

We saw:

* Intro to these
* Why this question is hard

* Some of the approaches we have

\

V' = random k-
dimensional subspace
of F"

Moral of the story:

There are lots of really fun questions
here!l And CS265/CME309 material is
relevant for them!




Thanks!

And thanks again for a great quarter!




