
Subsampling Suffices for 

Adaptive Data Analysis

Focus today



Using Samples to understand the Population

What pets do people like?

𝑝 = 5/6
𝑝 = 5/6
𝑝 = 3/6

𝑝 = 3/6



Using Samples to understand the Population

𝑝 = 5/6 ± 𝜀
𝑝 = 5/6 ± 𝜀
𝑝 = 3/6 ± 𝜀

𝑝 = 3/6 ± 𝜀

Fact: With a sample of size

𝑛 ≥ Ω
log 𝑞
𝜀!

𝑞-many 𝑝() queries will be within ±𝜀 of 
their values in the overall population.

Proof: Union bound over 𝑞 queries each with 
failure probability ≪ 1/𝑞.

For a single query, value of 𝑝"#$%&' is mean of 𝑛
independent Ber 𝑝%(%)&#*+(, . By Hoeffding’s
inequality,

Pr 𝑝"#$%&' − 𝑝%(%)&#*+(, ≥ 𝜀 ≤ 2𝑒-!.!/



Using Samples to understand the Population

Other examples:
1. What fraction of patients on medication X 

experience remission?
2. What fraction of people will vote for candidate Y?
3. What fraction of concepts does a student 

understand?



Adaptive data analysis

What pets do people like?

𝑝 = 5/6
𝑝 = 5/6

+ ?

𝑝!"#$%& , = 4/6

𝑝$'$(%")*'+ close?



Adaptive Data Analysis 

How can we guarantee results are 
representative of the population even 
when the queries are chosen adaptively?

Proposed by [Dwork, Feldman, Hardt, Pitassi, Reingold, and 
Roth 15]



Why adaptive data analysis is hard

Non-adaptive: Sample of size 𝑛 ≥ Ω &(0 1
.!

suffices

Adaptive counterexample: Population distribution,
𝒟 ≔ Uniform({1,2, … , 2𝑛})

Given sample 𝑺 ∼ 𝒟/, for each 𝑖 ∈ {1,2, … , 2𝑛}), ask query:
𝑦2 = 𝑝𝑺(𝑥 ↦ 𝟏 𝑥 = 𝑖 )

Track 𝑇 ≔ {𝑖 where 𝑦2 > 0}

After receiving response, ask query 𝑥 ↦ 𝟏 𝑥 ∈ 𝑇 ).
1. 𝑝𝑺 𝑥 ↦ 𝟏 𝑥 = 𝑖 = 1

2. 𝑝𝒟 𝑥 ↦ 𝟏 𝑥 = 𝑖 ≤ 5
!

Adaptive: With 𝑞 = 2𝑛 + 1, can 
force error 𝜀 ≥ 1/2.



Adaptive Data Analysis 

How can we guarantee results are 
representative of the population even 
when the queries are chosen adaptively?

Proposed by [Dwork, Feldman, Hardt, Pitassi, Reingold, and 
Roth 15]

Any ideas?



A simple solution

Take a fresh batch of ≈ 1/𝜀! samples for each query.

Requires sample size of

𝑛 ≈
𝑞
𝜀!
.



A better mechanism

Add noise 
mechanism

Sample 𝑆
𝑝 ? p ?

5/65/6 + 𝜁

Needs only 𝑛 = (𝑂 ,
-! samples to answer 𝑞 queries 

[DFHPR15, BNSSSU16]. 

𝜁 ∼ 𝑁(𝜇 = 0, 𝜎! = 𝜀!)



Why is adding noise good?

Add noise 
mechanism

Sample 𝑆
𝑝 ? p ?

5/65/6 + 𝜁

Intuition: To ask a bad query,        must have lots of information 
about 𝑆.      

Adding noise “hides” information about 𝑆. Formally, it ensures 
the query responses are differentially private. 

Very cool active area of research on 
how to quantify private algorithms.



My research question

What minimal assumptions can we make about 
the queries to guarantee the results generalize, 
even without an explicit mechanism?

My solution: Sufficient for each query to take as input a random 
subsample and outputs few bits.



Subsampling queries

Sample 𝑆 ∈ 𝑋/
𝜙:𝑋6 → 𝑌

𝜙(𝒙5, … , 𝒙6)
𝒙!, … , 𝒙" chosen 
uniformly without 
replacement from 𝑆

Theorem (informal): If each 𝑌 is small, 
results will be representative for 𝑞 queries 
as long as the sample size satisfies

𝑛 ≥ Ω 𝑤 𝑞 .

Compare to 𝑛 ≥ 𝑤𝑞
required if we use a 
separate sample for each 
query.



Sample 𝑆 ∈ 𝑋/[𝑝 in 𝒙5, … , 𝒙6 ]

Example application #1: Fraction queries

p ?

𝒙" ∼ Unif (𝑆)

This simple mechanism gives 
state of the art sample size-
accuracy tradeoff.



Example application #2: Is a training pipeline 
accurate?

Training 
pipeline𝑆*7#+, ℎ

𝑆*'"*

Accuracy > 0.95?

All one subsampling query with 𝑤 = 𝑆*7#+, + 𝑆*'"* and 𝑌 = {0,1}



Questions?

Sample 𝑆 ∈ 𝑋/
𝜙:𝑋6 → 𝑌

𝜙(𝒙5, … , 𝒙6)
𝒙!, … , 𝒙" chosen 
uniformly without 
replacement from 𝑆

Theorem (informal): If each 𝑌 is small, 
results will be representative for 𝑞 queries 
if

𝑛 ≥ Ω 𝑤 𝑞 .


