Class 5: Agenda and Questions

1 Warm-Up

Suppose you roll a 6-sided die n times. Use a Chernoff bound to bound the probability that you see more than $\frac{1+\delta}{6} \cdot n$ threes, where $\delta \in (0,1)$. What bound do you get as a function of n?

2 Announcements

- HW2 is due Friday!
- Friday is also the add-drop deadline; we'll get HW1 back to you before then.

3 Questions?

Any questions from the minilectures or warmup? (Moment generating functions; Chernoff bounds)

4 Randomized Routing

[Slides with setup; the summary is below and also in more detail in the lecture notes.]

The goal is the following. Suppose we want to design a network with M nodes and a routing protocol in such a way that 1) we have relatively few edges in the network (ie O(M) or $O(M \log M)$), and 2) if each node has a message to send to a some other node, the messages can all be routed to their destinations in a timely manner without too much congestion on the edges. More formally:

- Let H be the n-dimensional hypercube. There are 2^n vertices, each labeled with an element of $\{0,1\}^n$. Two vertices are connected by an edge if their labels differ in only one place. For example, 0101 is adjacent to 1101.
- Each vertex i has a packet (also named i), that it wants to route to another vertex $\pi(i)$, where $\pi: \{0,1\}^n \to \{0,1\}^n$ is a permutation.
- Each edge can only have one packet on it at a time (in each direction). Time is discrete (goes step-by-step), and the packets queue up in a first-in-first-out queue for each (directed) edge.

4.1 Group work: Bit-fixing scheme

Consider the following bit-fixing scheme: To send a packet i to a node j, we turn the bitstring i into the bitstring j by fixing each bit one-by-one, starting with the left-most and moving right. For example, to send

$$i = 001010$$

to

$$j = 101001,$$

we'd send

$$i = 001010 \rightarrow 101010 \rightarrow 101000 \rightarrow 101001 = j.$$

Group Work

1. Suppose that every packet is trying to get to $\vec{0}$ (the all-zero string). (Yes, I know that this isn't a permutation). Show that if every packet used the bit-fixing scheme (or, any scheme at all) to get to its destination, the total time required is at least $(2^n - 1)/n$ steps.

Hint: How many packets can arrive at $\vec{0}$ at any one timestep? How many packets need to arrive there?

2. Suppose that n is even. Come up with an example of a permutation π where the bit-fixing scheme requires at least $(2^{n/2} - 1)/(n/2)$ steps.

Hint: Consider what happens if $(\vec{a}, \vec{b}) \in \{0, 1\}^n$ wants to go to (\vec{b}, \vec{a}) , where $\vec{a}, \vec{b} \in \{0, 1\}^{n/2}$, and use part 1.

3. If you still have time, think about the following: what happens if each packet i wants to go to a uniformly random destination $\delta(i)$, under the bit-fixing scheme? Will it be as bad as the scheme you came up with in part 2? Or will it finish in closer to O(n) steps?

4.2 A useful lemma

[Slides. The slides state the following lemma.]

Lemma 1. Let D(i) denote the delay in the *i*'th packet. That is, this is the number of timesteps it spends waiting.

Let P(i) denote the path that packet i takes under the bit-fixing map. (So, P(i) is a collection of directed edges).

Let N(i) denote the number of other packets j so that $P(j) \cap P(i) \neq \emptyset$. That is, at some point j wants to traverse an edge that i also wants to traverse, in the same direction, although possibly at some other point in time.

Then $D(i) \leq N(i)$.

Group Work

Let $\delta : \{0,1\}^n \to \{0,1\}^n$ be a completely random function (not necessarily a permutation). That is, for each i, $\delta(i)$ is a uniformly random element of $\{0,1\}^n$, and each $\delta(i)$ is independent.

In this group work, you will analyze how the bit-fixing scheme performs when packet i wants to go to node $\delta(i)$.

Fix some special node/packet i. Let D(i) and P(i) be as above. Fix $\delta(i)$ (and hence P(i), since we have committed to the bit-fixing scheme). But let's keep $\delta(j)$ random for all $j \neq i$. (Formally, we will condition on an outcome for $\delta(i)$; since $\delta(i)$ is independent from all of the other $\delta(j)$, this won't affect any of our calculations).

Let X_j be the indicator random variable that is 1 if P(i) intersects P(j).

- 1. Assume that we are using the bit-fixing scheme. Argue that $\mathbb{E}[\sum_{i} X_{j}] \leq n/2$.
 - **Hint**: In expectation, how many directed edges are in all of the paths P(j) taken together (with repetition)? Show that this is at most $2^n \cdot n/2$. Then argue that the expected number of paths P(j) that any single directed edge e is in is 1/2. Finally, bound $\sum_j X_j \leq \sum_{e \in P(i)}$ (number of paths P(j) that e is in) and use linearity of expectation and the fact that $|P(i)| \leq n$ to bound $\mathbb{E}[\sum_j X_j]$.
- 2. Use a Chernoff bound to bound the probability that $\sum_{i} X_{ij}$ is larger than 10n.
- 3. Use your answer to the previous question to bound the probability that the bit-fixing scheme takes more than 11n timesteps to send every packet i to $\delta(i)$, assuming that the destinations $\delta(i)$ are completely random.

Hint: Lemma 1.

If you still have time, think about the following:

4. However, the destinations are not random! They are given by some worst-case permutation π . Using what you've discovered above for random destinations, develop a randomized routing algorithm that gets every packet where it wants to go, with high probability, in at most 22n steps.

Hint: The fact that 22n is two times 11n is not an accident.