Class 6

The power of two choices

Recap I

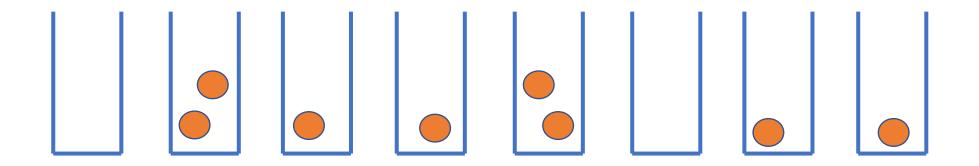
- Balls and bins!
- Powerful tool: Poissonization (Poissonification?)
- $X \sim Poi(\lambda)$: • $\Pr[X = k] = \frac{e^{-\lambda}\lambda^k}{k!}$ • $E[X] = \operatorname{Var}[X] = \lambda$ • $\Pr[|X - \lambda| \ge c] \le 2 \exp\left(\frac{-c^2}{2(c+\lambda)}\right)$

Recap II

- If you drop $k \sim Poi(n)$ balls into m bins, then:
 - Let $X_i = #$ (Balls in bin i)
 - $X_i \sim Poi\left(\frac{n}{m}\right)$
 - The X_i are all independent
- "Poissonization":
 - #(Balls in bin i when you drop n balls into m bins) $\approx X_i$
 - Work with the *X_i* instead.

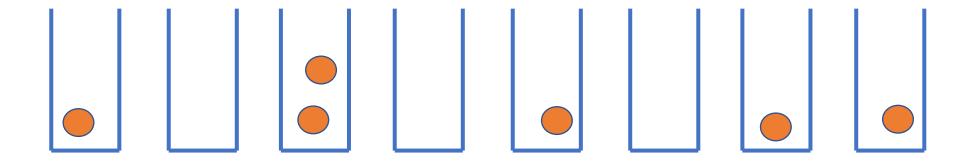
Recap III: Maximum Load

- *n* balls into *n* bins.
- Max load is $\Theta\left(\frac{\log n}{\log \log n}\right)$



Today: The power of two choices

- Drop n balls into n bins.
- For each ball, pick two bins at random.
- The ball goes in the less-full bin. (Break ties arbitrarily).



The power of two choices

Exponentially

smaller!

• *n* balls into *n* bins, completely randomly:

• Max load is $\Theta\left(\frac{\log n}{\log \log n}\right)$

- n balls into n bins, according to the "pick two" scheme:
 - Max load is $\Theta(\log \log n)$

This is useful, for example, when trying to efficiently assign jobs to processors and wanting to balance the loads.

Group Work

Intuition

Definitions:

$$\beta_2 = \frac{n}{2} \qquad \beta_i = \frac{\beta_{i-1}^2}{n}$$

B(i, t) = number of bins with $\geq i$ balls after step t

1. Explain why $B(2,t) \leq \beta_2$ for all t.

2. Show that

$$\Pr \left\{ \text{Ball } t \text{ is the} \geq 3 \text{rd ball to land in its bin} \right\} \leq \left(\frac{B(2,t-1)}{n} \right)^2 \leq \frac{\beta_2^2}{n^2},$$

for all t.

3. Show that, for all t,

$$\mathbb{E}[B(3,t)] \le \beta_3.$$

4. Suppose that $B(3,t) \leq \beta_3$ for all t. That is, suppose that the thing that you showed in expectation before actually held. Show that, for all t,

 $\mathbb{E}[B(4,t)] \le \beta_4.$

5. Suppose that this logic continued, and you could show that $\mathbb{E}[B(i, t)] \leq \beta_i$ for all t. What would the max load be?

- $\beta_2 = n/2$. - There can't be more than 2 buckets with $\geq n/2$ balls in them (since there's only n balls total). - So $B(2,t) \leq B(2,n) \leq \beta_2$

- $\beta_2 = n/2$.
- There can't be more than 2 buckets with $\ge n/2$ balls in them (since there's only *n* balls total).
- So $B(2,t) \leq B(2,n) \leq \beta_2$

Definitions:

β

$$_{2} = \frac{n}{2} \qquad \beta_{i} = \frac{\beta_{i-1}^{2}}{n}$$

B(i, t) = number of bins with $\geq i$ balls after step t

- Probability that ball t is the third (or greater) ball in its bucket:
 - Need to choose two buckets with at least two things in them.
 - The probability of that is at most $\left(\frac{B(2,t-1)}{n}\right)^2 \le \left(\frac{\beta_2}{n}\right)^2$



B(2, t-1) buckets with ≥ 2 balls in them.

3. Show that, for all t,

Solutions: Question 3

 $\mathbb{E}\left[B(3,t)\right] \leq \mathbb{E}\left[B(3,n)\right]$

This is because the number of bins with at least 3 balls is at least the number of balls that were at least 3rd in their bin.

$$\leq \mathbb{E}\left[\sum_{t=1}^{n} \mathbb{I}\left\{\sum_{j=3}^{n} \frac{1}{j} + \frac{1}{j}\right\}\right]$$

= $\sum_{t=1}^{n} \mathbb{P}\left\{\sum_{j=3}^{n} \frac{1}{j} + \frac{1}{j}\right\}$
 $\leq \sum_{t=1}^{n} \left(\frac{\beta_{2}}{n}\right)^{2} = \frac{\beta_{2}^{2}}{n} = \frac{\beta_{3}}{2}$
 $\leq \sum_{t=1}^{n} \left(\frac{\beta_{2}}{n}\right)^{2} = \frac{\beta_{2}^{2}}{n} = \frac{\beta_{3}}{2}$

 $\mathbb{E}[B(3,t)] \le \beta_3.$

4. Suppose that $B(3,t) \leq \beta_3$ for all t. That is, suppose that the thing that you showed in expectation before actually held. Show that, for all t,

 $\mathbb{E}[B(4,t)] \le \beta_4.$

Solutions: Question 4

$$E[B(4,t)] \leq E[B(4,n)]$$

$$\leq E[\sum_{t=1}^{n} 1\left\{\sum_{i=1}^{ball t} is \right\} = 4^{th} \text{ in its bucket}]$$

$$= \sum_{t=1}^{n} P\left\{\sum_{i=1}^{ball t} is \right\} = 4^{th} \text{ in its bucket}]$$

$$\leq \sum_{t=1}^{n} \left(\frac{\beta_{3}}{n}\right)^{2} = \frac{\beta_{3}^{2}}{n} = \frac{\beta_{4}}{t} \text{ def. of } \beta_{4}$$

*Note: As per the instructions in the question, we are ignoring anything about conditioning on the event that $B(3,t) \le \beta_3$ 5. Suppose that this logic continued, and you could show that $\mathbb{E}[B(i, t)] \leq \beta_i$ for all t. What would the max load be?

Solutions: Question 5

•
$$\beta_i = \frac{n}{2^{2^{i-2}}}$$

• You can see this by doing out a bunch and guessing the pattern:

•
$$\beta_2 = \frac{n}{2}$$

• $\beta_3 = \frac{1}{n} \left(\frac{n}{2}\right)^2 = \frac{n}{2^2}$
• $\beta_4 = \frac{1}{n} \left(\frac{n}{2^2}\right)^2 = \frac{n}{2^{2^2}}$
• $\beta_5 = \frac{1}{n} \left(\frac{n}{2^{2^2}}\right)^2 = \frac{n}{2^{2^3}}$
• $\beta_6 = \frac{1}{n} \left(\frac{n}{2^{2^3}}\right)^2 = \frac{n}{2^{2^4}}$

(And formally you can prove it by induction.)

5. Suppose that this logic continued, and you could show that $\mathbb{E}[B(i, t)] \leq \beta_i$ for all t. What would the max load be?

Solutions: Question 5

•
$$\beta_i = \frac{n}{2^{2^{i-2}}}$$

 Suppose that this logic continued, and you could show that E[B(i, t)] ≤ β_i for all t. What would the max load be?

•
$$\beta_i = \frac{n}{2^{2^{i-2}}}$$

• If we believe that $B(i,n) \leq \beta_i$ for all i, then at some point (for large enough i), we have $\beta_i < 1$.

• That would imply that B(i, n) = 0.

• That would mean that the number of bins with load $\geq i$ is 0, aka the max load is i - 1.

5. Suppose that this logic continued, and you could show that $\mathbb{E}[B(i, t)] \leq \beta_i$ for all t. What would the max load be?

•
$$\beta_i = \frac{n}{2^{2^{i-2}}}$$

• If we believe that $B(i,n) \leq \beta_i$ for all i, then at some point (for large enough i), we have $\beta_i < 1$.

• That would imply that B(i, n) = 0.

That would mean that the number of bins with load ≥ i is 0, aka the max load is i − 1.

• Set
$$\frac{n}{2^{2^{i-2}}} < 1$$
 and solve for i : get $i > \log \log n + 2$.

 Suppose that this logic continued, and you could show that E[B(i, t)] ≤ β_i for all t. What would the max load be?

•
$$\beta_i = \frac{n}{2^{2^{i-2}}}$$

• If we believe that $B(i,n) \leq \beta_i$ for all i, then at some point (for large enough i), we have $\beta_i < 1$.

• That would imply that B(i, n) = 0.

- That would mean that the number of bins with load ≥ i is 0, aka the max load is i − 1.
- Set $\frac{n}{2^{2^{i-2}}} < 1$ and solve for i: get $i > \log \log n + 2$.
- Conclude that max load is Θ(log log n), assuming that the "in expectation" stuff holds exactly.

Here's the outline for an argument

WARNING: This is incorrect in a few ways.

1. Define
$$B_a = N_a$$
, $B_i = \frac{2(B_{i-1})^2}{n}$ this "2" is new.

number of bins w/ zi balls after all n are tossed.

2. Argue by induction on i that, with probability
$$\ge 1 - \frac{1}{n^2}$$
, $B(i:n) \le B_i$:

number of bins w/ zi balls after all n are tossed.

2. Argue by induction on i that, with probability
$$\ge 1 - \frac{1}{n^2}$$
, $B(i:n) \le B_i$:

• Base case for i=2 is by definition.

number of bins w/ zi balls after all n one tossed.

2. Argue by induction on i that, with probability
$$\ge 1 - \frac{1}{n^2}$$
, $B(i:n) \le B_i$:

• Base case for
$$i=2$$
 is by definition.
• Assuming that $B(i-1,n) \leq B_{i-2}$ (which holds w) prob $\geq 1 - \frac{1-1}{n^2}$ by induction)
the same logic from before implies that
 $I \equiv \left[\sum_{i=1}^{n} 1 \right]$ ball t is the $\geq i^{th} \left[\right] \leq B_{i-1}^{2} / n$

number of bins w/ zi balls after all n are tossed.

2. Argue by induction on i that, with probability
$$\ge 1 - \frac{1}{n^2}$$
, $B(i:n) \le B_i$:

• Base case for
$$i = 2$$
 is by definition.
• Assuming that $B(i-1, n) \leq B_{i-1}$ (which holds w/ prob $\geq 1 - \frac{1-1}{n^2}$ by induction)
the same logic from before implies that
 $I \equiv \left[\frac{1}{2} \frac{n}{1+1} + 1 \right]$ boilt t is the $\geq i^{th} = \frac{1}{2} = \frac{1}{2} \frac{1}{2} + \frac{1}{2} \frac{1}{2} + \frac{1}{2} \frac{1}{2}$

• A Chernoff bound says that

$$T = 1 \begin{cases} \sum_{i=1}^{n} \frac{1}{2} \\ \sum_{i$$

number of bins w/ zi balls after all n are tossed.

2. Argue by induction on i that, with probability
$$\ge 1 - \frac{1}{n^2}$$
, $B(i,n) \le B_i$:

number of bins w/ zi balls after all n ore tossed.

2. Argue by induction on i that, with probability
$$\ge 1 - \frac{1}{n^2}$$
, $B(i:n) \le B_i$:

• Therefore, if
$$B_i \ge 6\log n$$
, this probability is $\le 1/n^2$. By a union bound w/
the event that $B(i-1,n) > B_{i-1}$, $P[B(i,n) > B_i] \le 1 - i/n^2$.

This establishes the inductive hypothesis for *i*, as long as $\beta_i \ge 6 \log n$

3. Choose it so that
$$B_{i*} \ge 6 \cdot \log n$$
.
So the argument above shows that, whp, $B(i,n) \le B_i \quad \forall i \le i^*$.
You can check that $B_{i*} \simeq 6 \log n$ when $i^* = \Theta(\log \log n)$.

3. Choose it so that
$$B_{i*} \ge 6 \log n$$
.
So the argument above shows that, whp, $B(i,n) \le B_i \quad \forall i \le i^*$.
You can check that $B_{i*} \simeq 6 \log n$ when $i^* = \Theta(\log \log n)$.

4. We conclude that, whp,
$$B(in) \in B_i$$
 for all $i \le i^* = \Theta(\log \log n)$.
Just as before, this implies that the max load is $\Theta(\log \log n)$

Group Work

- What was wrong with this argument/sketch?
- There are at least two or three major problems
 - depending on what you count as "major"

Three problems

- 1. Can't apply the Chernoff bound the random variables are not independent!
- 2. The end of the argument doesn't make any sense! We showed that $B(i,n) \le \beta_i$ whenever $i \le i^*$, but $\beta_{i^*} \approx 6 \log n$.
 - So there are still about $6 \log n$ buckets with at least i^* balls in them.
 - (It is true that $i^* = \Theta(\log \log n)$ though).
- 3. We are not being careful about the conditioning.

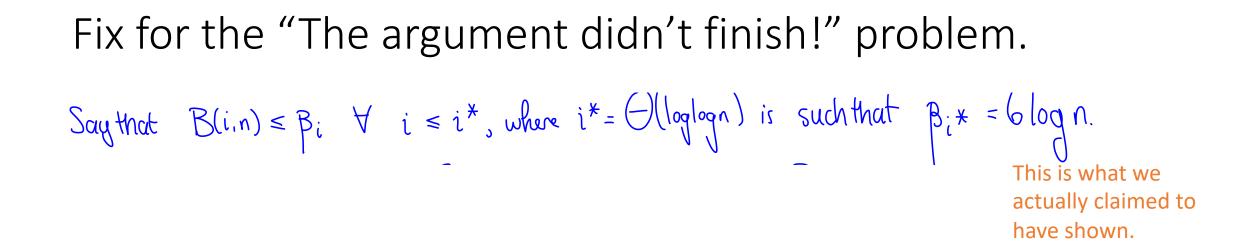
Fix for the Chernoff bound problem (sketch)

$$P\left\{ \sum_{t=1}^{n} 1 \left\{ \begin{array}{l} \text{Ball } t \text{ is } \geqslant i^{th} \\ \text{ball } b \text{ land } in \text{ its} \\ \text{bin} \end{array} \right\} \right\}$$

$$= P\left\{ \begin{array}{l} n-4 \\ \sum_{t=1}^{n} 1 \left\{ \begin{array}{l} \text{Ball } t \text{ is } \geqslant i^{th} \\ \text{ball } b \text{ land} \\ \text{in its } bin \end{array} \right\} + 1 \left\{ \begin{array}{l} \text{Ball } n \text{ is the } \geqslant i^{th} \\ \text{ball } b \text{ land} \\ \text{in its } bin \end{array} \right\} \right\}$$

$$= \left[\begin{array}{l} n\text{duchively assume that this} \\ \text{Sum behaves like} \\ \text{Binomial } (n-1, \leq \left(\frac{p_{t-1}}{n}\right)^2\right) \end{array} \right] \left\{ \begin{array}{l} \left(\frac{p_{t-1}}{n}\right)^2 \\ \text{vandomness in ball } n \end{array} \right\} \right\} = \left(\frac{p_{t-1}}{n}\right)^2, \text{ over the} \\ \text{vandomness in ball } n \end{array}\right\}$$

Fix for the "The argument didn't finish!" problem. Say that $B(i,n) \leq B_i$ $\forall i \leq i^*$, where $i^* = O(\log \log n)$ is such that $B_i * = \log n$. Then $\mathbb{P}\left\{B(i^{*}+1,n) \geq 1\right\} \leq \mathbb{P}\left\{B(i^{*},n) \geq 2\right\}$ This is what we actually claimed to have shown. because there have to be at least 2 bins w/ i*+ 1 things in them for some bin to end up w/ i* things. $\leq \sum_{s < t} \mathbb{P} \left\{ \begin{array}{l} \text{Both balls s and t} \\ \text{are } \geq \text{the } i^{*' \text{th}} \\ \text{thing in their bin} \end{array} \right\}$ (union bound over all the balls) $\leq \begin{pmatrix} n \\ 2 \end{pmatrix} \mathbb{P} \begin{cases} \text{S is } \geqslant i^{*} \text{ tr} \\ \text{in its} \end{cases} \mathbb{P} \begin{cases} \text{t is } \geqslant i^{*} \text{tr} \\ \text{in its} \end{cases} \mathbb{P} \begin{cases} \text{in its } \implies i^{*} \text{tr} \\ \text{in its} \\ \text{bin} \end{cases}$ this doesn't affect our argument before "for t, assuming $B(i^*,n) \leq \beta_i^*$



Fix for the "The argument didn't finish!" problem.

Say that
$$B(i,n) \leq B_i$$
 \forall $i \leq i^*$, where $i^* = O(\log \log n)$ is such that $B_i^* = 6\log n$.
Then $P\{B(i^*+1,n) \geq 1\} \leq P\{B(i^*,n) \geq 2\}$
because there have to be at least 2 bins $w/i^* + 1$ things in them for some bin to end up w/i^* . This is what we actually claimed to have shown.

Fix for the "The argument didn't finish!" problem.

Say that
$$B(i,n) \leq B_i$$
 \forall $i \leq i^*$, where $i^* = \Theta(\log \log n)$ is such that $B_i^* = 6\log n$.
Then $P\{B(i^*+1,n) \geq 1\} \leq P\{B(i^*,n) \geq 2\}$
 \downarrow because there have to be at least 2 bins $w/i^* + 1$ things
in them for some bin to end up w/i^* . things.
 $\leq \sum_{s < t} P\{B(T+t) \text{ balls } s \text{ and } t\}$ (union bound are all the balls)
 $s < t$ thing in their bin

Fix for the "The argument didn't finish!" problem. Say that $B(i,n) \leq B_i$ $\forall i \leq i^*$, where $i^* = O(\log \log n)$ is such that $B_i * = \log n$. Then $\mathbb{P}\left\{B(i^{*}+1,n) \geq 1\right\} \leq \mathbb{P}\left\{B(i^{*},n) \geq 2\right\}$ This is what we actually claimed to have shown. because there have to be at least 2 bins w/ i*+ 1 things in them for some bin to end up w/ i* things. $\leq \sum_{s < t} \mathbb{P} \left\{ \begin{array}{l} \text{Both balls s and t} \\ \text{are } \geq \text{the } i^{*' \text{th}} \\ \text{thing in their bin} \end{array} \right\}$ (union bound over all the balls) $\leq \begin{pmatrix} n \\ 2 \end{pmatrix} \mathbb{P} \begin{cases} \text{S is } \geqslant i^{*} \text{ tr} \\ \text{in its} \end{cases} \mathbb{P} \begin{cases} \text{t is } \geqslant i^{*} \text{tr} \\ \text{in its} \end{cases} \mathbb{P} \begin{cases} \text{in its } \implies i^{*} \text{tr} \\ \text{in its} \\ \text{bin} \end{cases}$ this doesn't affect our argument before "for t, assuming $B(i^*,n) \leq \beta_i^*$

Fix for the "The argument didn't finish!" problem, ctd.

$$\mathbb{P}\left\{B(i^{*}+1,n) \ge 1\right\} \leq \binom{n}{2} \mathbb{P}\left\{S \text{ is } \ge i^{*}m\right\} \mathbb{P}\left\{t \text{ is } \ge i^{*}m\right\} S \text{ is } \ge i^{*}m\right\}$$

$$\mathbb{P}\left\{B(i^{*}+1,n) \ge 1\right\} \leq \binom{n}{2} \mathbb{P}\left\{S \text{ is } \ge i^{*}m\right\} \mathbb{P}\left\{t \text{ is } \ge i^{*}m\right\} S \text{ in its } S \text{ i$$

$$\leq \binom{n}{2} \left(\frac{\beta_{i}}{n} \right)^{2} \left(\frac{\beta_{i}}{n} \right)^{2} \left(\frac{\beta_{i}}{n} \right)^{2}$$

$$\leq n^2 \cdot \left(\frac{6\log n}{n}\right)^4 = \frac{6^4\log^4 n}{n^2} = o(1).$$

Fix for the "We are being sloppy about the conditioning" problem.

• Be less sloppy about the conditioning.

• (It's a bit delicate but not that interesting...)