Class 7

Sparsest Cuts from Metric Embeddings



Warm-Up
| Group Work

Let G = (V, E) be a weighted, undirected graph, on n vertices with edge weights w,,
on the edge {u,v} € E. Let d: V x V — R be the associated graph metric.

Explain how to efficiently find and apply a map f : V — R*, for k = O(log®n), so that

2 quvye 1F (1) = F()]x 2 qupyen 41U, )
2 quwye(¥) 1F(@) = f()|a 2 fupye(¥) s v)

< O(logn)

holds with high probability. Above, (g) refers to the set of all unordered pairs {u, v} for
u,v € V and u # v.

Announcements:

e HWS3 due Friday!

* Please fill out feedback form

e Starting today, I'll try to post some version of my in-class slides on the website. (Please email me or ask on Ed if | forget).



Recap

* Bourgain’s embedding!
* Randomized embedding from any X of size n into (R¥, ¢;)
* Distortion O(logn)
* k = 0(log?n)



Questions?

Minilectures, quiz, warmup?

| Group Work

Let G = (V, E) be a weighted, undirected graph, on n vertices with edge weights w,,
on the edge {u,v} € E. Let d: V x V — R be the associated graph metric.

Explain how to efficiently find and apply a map f : V — R¥, for k = O(log®n), so that

> unyer If(w) = fF@)1 _ > wvyer 4(u,v)
S wre) 170 — FO = COBIT oy d)

holds with high probability. Above, (‘2/) refers to the set of all unordered pairs {u, v} for
u,v € V and u # v.




Q1 Can it be embedded?

6 Points

Consider the graph metric space (V, d) induced by
the following graph:

=

Into which space can (V/, d) be isometrically
embedded? Select all that apply.

(R2,d,)

(R?%,d,)



Q2 An embedding

3 Points

Let (X, d) be a finite metric space with 1 points, and
write X = {1, 3,...,2,}. Considerthe map f :
X — R" given by

fly) = (d(y,z1),d(y, z2), ..., d(y, z,))

Which of the following are true? Check all that apply.

f is an isometric embedding into (R™, d)




Plan for today

e Application of Bourgain’s embedding to sparsest cuts



Sparsest Cuts

G =(V,E) is an undirected, unweighted graph:

(6.5)- | E(S,T) | «—Navbarcr edes bebwen

\e | = Sod § ' g
NI
“Wﬁ*m ﬁ—f}dumhd o? ed%cf_
wt 53). s 3wl 5

in e comphﬁ’. %ra?()/\

§@)= M 9(4:5)

SEV
S+¢,S#V




Goal: Find a sparsest cut

* a.k.a., find S so that ¢(G,S) = p(G)



Goal: Find a sparsest cut

* a.k.a., find S so that ¢(G,S) = p(G)
* Problem: this is NP-hard.

Assuming plausible
complexity-theoretic
assumptions, it’s NP-
hard even to
approximate ¢(G) to
within a constant
factor.




Goal: Find a sparsest cut

* a.k.a., find S so that ¢(G,S) = p(G)
* Problem: this is NP-hard. e

assumptions, it’s NP-
hard even to

* Today: randomized algorithm to (probably) find S so that ~ @pproximate ¢(G) to

¢(G,5) = O(logn) - ¢(G)

factor.




Outline

* Group Work 1:

(Q G\\ Ziu\vgeg f{ B—F(v) “
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* Group Work 2:

 ...use something about metric embeddings to approximate that thing.



Group Work!
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Solution: Problem 2 0(a) -
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Solution: Problem 2 0(a) -
Note: this is just meant as intuition Sj\\{{@ ZS\ME( \ |£(w ‘F |
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Solution: Problem 2 olg) - ™
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Solution: Problem 2 olg) - ™
Note: this is just meant as intuition Sj\\{{@ ZS\ME( \ |£(w ‘F |
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Solution: Problem 2 olg) - ™
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Note: this is just meant as intuition
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Solution: Problem 2 0(a) - %

Note: this is just meant as intuition

From before:

Ziu\vgeg \IY‘M*F(V”
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We just showed that the min over f:VV — R is actually attained by some f:V — {0,1}.
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Solution: Problem 3
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So adding more dimensions to f can’t make this value any smaller than f:V — R



Conclusion
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* Next up: using this to design an algorithm!



Let’s come up with an algorithm!

> quwyee Il () = F(v)lh

* Hope: find f to minimize &(f):= > wepe(r) 17 @) = F@)I

* Unfortunately that’s not so easy...

e Instead, Find values d. . € R for all u # v € V' to minimize

Q(d) := Z du s This is a linear

program. Turns out
we can solve it
efficiently.

subject to:
e d,,=d,, >0 forall uv
e d,,+d,, > d,, for all u,v,w

— Z{u,vv}G(g) d“?"" =1



Group Work!

2. Suppose that d* is the minimizer of the problem above.

Explain why Q(d*) < ¢(G).

3. Find a randomized algorithm to approximate ¢(G). More precisely, give a random-
ized algorithm that finds f : V' — R* so that, with high probability,

Z{u,v}GE ”f(U) _ f(v)lll
Z{u,v}e(;’) [f(w) — f(v)|[x —

< O(logn)o(G).

4. Given f as in the previous part, explain how to efficiently find a set S C V so that

¢(G, S) < O(logn)¢(G).

Find values d,,,, € R for all u # v € V' to minimize

Q)= ) duy

{uv}eFE

subject to:
e d,,=d,, >0forall u,v
o d,,+d,, > d,, for all u,v,w

.- E{u,v}é(g) d"'” =1




Solution: Problem 2
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Solution: Problem 2

o df is @ metric, and in particW
satisfies these constraints.

* Thus, forall f:V - RF,
Q(d*) < Q(ds) = R(f)

* =00d) < mfinR(f) = ¢(G)




Solution: Problem 3

Find a randomized alg. to approximate ¢ (G)

3. Find a randomized algorithm to approximate ¢((G). More precisely, give a random-
ized algorithm that finds f : V — R* so that, with high probability,

> quyee IF(w) = f(@)|h .
> tume(y) 1£ @) = f@)]; < O(logn)¢(G).
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Solution: Problem 3

Find a randomized alg. to approximate ¢ (G)

* This was the warm-up problem!
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4. Given f as in the previous part, explain how to efficiently find a set S C V so that

Solution: Problem 4
The final algorithm
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Recap

* We can find approximately-sparsest cuts efficiently!

Ziu\v%eE %UQWC(V) ul
W%T\K Zguvle(\\mu )~ “1

* Step 1: L? G\S

* Step 2: Use an LP to to find some metric d” (not necessarily an £, metric)
so that this quantity is small.

* Step 3: Use Bourgain’s embedding to find some f so that ||f(u) —
f()|l; = d*(u,v), so that this quantity is still pretty small.

» Step 4: Reverse-engineer Step 1 to find an actual cut S, S.



