Class 7

Sparsest Cuts from Metric Embeddings

Warm-Up

Group Work

Let G = (V, E) be a weighted, undirected graph, on n vertices with edge weights w_{uv} on the edge $\{u, v\} \in E$. Let $d: V \times V \to \mathbb{R}$ be the associated graph metric.

Explain how to efficiently find and apply a map $f: V \to \mathbb{R}^k$, for $k = O(\log^2 n)$, so that

$$\frac{\sum_{\{u,v\}\in E} \|f(u) - f(v)\|_1}{\sum_{\{u,v\}\in \binom{V}{2}} \|f(u) - f(v)\|_1} \le O(\log n) \frac{\sum_{\{u,v\}\in E} d(u,v)}{\sum_{\{u,v\}\in \binom{V}{2}} d(u,v)}$$

holds with high probability. Above, $\binom{V}{2}$ refers to the set of all unordered pairs $\{u, v\}$ for $u, v \in V$ and $u \neq v$.

Announcements:

- HW3 due Friday!
- Please fill out feedback form
- Starting today, I'll try to post some version of my in-class slides on the website. (Please email me or ask on Ed if I forget).

Recap

- Bourgain's embedding!
 - Randomized embedding from any X of size n into (R^k, ℓ_1)
 - Distortion $O(\log n)$
 - $k = O(\log^2 n)$

Questions?

Minilectures, quiz, warmup?

Group Work

Let G = (V, E) be a weighted, undirected graph, on n vertices with edge weights w_{uv} on the edge $\{u, v\} \in E$. Let $d: V \times V \to \mathbb{R}$ be the associated graph metric.

Explain how to efficiently find and apply a map $f: V \to \mathbb{R}^k$, for $k = O(\log^2 n)$, so that

$$\frac{\sum_{\{u,v\}\in E} \|f(u) - f(v)\|_1}{\sum_{\{u,v\}\in \binom{V}{2}} \|f(u) - f(v)\|_1} \le O(\log n) \frac{\sum_{\{u,v\}\in E} d(u,v)}{\sum_{\{u,v\}\in \binom{V}{2}} d(u,v)}$$

holds with high probability. Above, $\binom{V}{2}$ refers to the set of all unordered pairs $\{u,v\}$ for $u,v\in V$ and $u\neq v$.

Q1 Can it be embedded?

6 Points

Consider the graph metric space (V,d) induced by the following graph:

Into which space can (V,d) be isometrically embedded? Select all that apply.

Q2 An embedding

3 Points

Let (X,d) be a finite metric space with n points, and write $X=\{x_1,x_2,\ldots,x_n\}$. Consider the map $f:X o\mathbb{R}^n$ given by

$$f(y)=(d(y,x_1),d(y,x_2),\ldots,d(y,x_n))$$

Which of the following are true? Check all that apply.

lacksquare f is an isometric embedding into (\mathbb{R}^n,d_∞)

f is an isometric embedding into (\mathbb{R}^n,d_1)

Plan for today

Application of Bourgain's embedding to sparsest cuts

Sparsest Cuts

• G = (V,E) is an undirected, unweighted graph:

$$\varphi(G,S) = \frac{|E(S,\overline{S})|}{|S| \cdot |S|} \leftarrow \text{Number of edges between } S \text{ and } \overline{S} \text{ in } G$$
"sparsily" of the cut (S,\overline{S}) .

Number of edges between $S \text{ and } \overline{S}$ in the complete graph

$$\varphi(G) = \min_{S \subseteq V} \varphi(G,S)$$
 $S \neq \phi, S \neq V$

Goal: Find a sparsest cut

• a.k.a., find S so that $\phi(G,S) = \phi(G)$

Goal: Find a sparsest cut

- a.k.a., find S so that $\phi(G,S) = \phi(G)$
- Problem: this is NP-hard.

Assuming plausible complexity-theoretic assumptions, it's NP-hard even to approximate $\phi(G)$ to within a constant factor.

Goal: Find a sparsest cut

- a.k.a., find S so that $\phi(G,S) = \phi(G)$
- Problem: this is NP-hard.

• Today: randomized algorithm to (probably) find S so that $\phi(G,S) \leq O(\log n) \cdot \phi(G)$

Assuming plausible complexity-theoretic assumptions, it's NP-hard even to approximate $\phi(G)$ to within a constant factor.

Outline

• Group Work 1:

$$\varphi(G) = \min_{f:V \to \mathbb{R}^k} \frac{\sum_{\{u_i v\} \in E} \|f(u) - f(v)\|_1}{\sum_{\{u_i v\} \in \binom{V}{2}} \|f(u) - f(v)\|_1}$$

- Group Work 2:
 - ...use something about metric embeddings to approximate that thing.

Group Work!

1.
$$\phi(G) = \min_{f:V \to \{0,1\}} \frac{\sum_{\{u,v\} \in E} |f(u) - f(v)|}{\sum_{\{u,v\} \in \binom{V}{2}} |f(u) - f(v)|},$$

This one is the conceptually important one

$$\phi(G) = \inf_{f:V-\mathbb{R}} \frac{\sum_{\{u,v\}\in E} |f(u) - f(v)|}{\sum_{\{u,v\}\in \binom{V}{2}} |f(u) - f(v)|},$$

3.
$$\phi(G) = \min_{f:V \to \mathbb{R}^k} \frac{\sum_{\{u,v\} \in E} \|f(u) - f(v)\|_1}{\sum_{\{u,v\} \in \binom{V}{2}} \|f(u) - f(v)\|_1},$$

Just try to get some intuition for these.

$$\varphi(G) = \min_{f: \forall \to \{0,1\}} \frac{\sum_{\{u,v\} \in E} |f(u) - f(v)|}{\sum_{\{u,v\} \in \binom{V}{2}} |f(u) - f(v)|}$$

$$S \subseteq V \iff f: V \rightarrow \{0,1\}$$

 $f(u) = 1\{u \in S\}$ aka $S = \{u \in V: f(u) = 1\}$

$$\frac{1\{\{u_iv\} \text{ crosses the cut}\}}{|f(u)-f(v)|} = \frac{\text{\#edges crossing the cut } S,\overline{S} \text{ in } G}{\text{\#edges crossing the cut } S,\overline{S} \text{ in } K_n} = \frac{|E(S,\overline{S})|}{|S|\cdot|\overline{S}|} = \varphi(G,S)$$

Note: this is just meant as intuition

EXAMPLE: Say
$$f:V \rightarrow \{0, \frac{1}{2}, 1\}$$

$$f(D) = 1$$

$$f(A) = 1$$

$$f(C) = 0$$

$$f(B) = V_2$$

$$\varphi(G) = \min_{f: \forall f \in \mathbb{R}} \frac{\sum_{\{u_1v\} \in E} |f(u) - f(v)|}{\sum_{\{u_1v\} \in \binom{V}{2}\}} |f(u) - f(v)|}$$

$$Call this R(f)$$

Note: this is just meant as intuition

EXAMPLE: Say
$$f:V \rightarrow \{0, \frac{1}{2}, 1\}$$

$$\varphi(G) = \min_{f: \forall f \in \mathbb{R}} \frac{\sum_{\{u_i v\} \in E} |f(u) - f(v)|}{\sum_{\{u_i v\} \in \binom{V}{2}\} |f(u) - f(v)|}$$
Call this $R(f)$

$$f(D) = 1$$

$$f(A) = 1$$

$$f(C) = 0$$

$$f(B) = X$$

$$R(f) = \frac{|1-\frac{1}{2}|+|\frac{1}{2}-0|+|\frac{1}{2}-1|}{|1-\frac{1}{2}|+|\frac{1}{2}-0|+|\frac{1}{2}-1|+|1-0|}$$

$$R(x) = \frac{\left| 1 - x \right| + \left| x - 0 \right| + \left| x - 1 \right|}{\left| 1 - x \right| + \left| x - 0 \right| + \left| x - 1 \right| + \left| 1 - 0 \right| + \left| 1 - 0 \right|}$$

Note: this is just meant as intuition

EXAMPLE: Say
$$f:V \rightarrow \{0, \frac{1}{2}, 1\}$$

EXAMPLE: Say
$$f:V \longrightarrow \{0, \sqrt{2}, \frac{1}{2}\}$$

f(c)=0

$$\varphi(G) = \min_{f: \forall f \in \mathbb{R}} \frac{\sum_{\{u,v\} \in E} |f(u) - f(v)|}{\sum_{\{u,v\} \in \binom{V}{2}\}} |f(u) - f(v)|}$$

$$Call this R(f)$$

$$R(x) = \frac{|1-x|+|x-0|+|x-1|}{|1-x|+|x-0|+|x-1|+|1-0|+|1-1|+|1-0|}$$

Note: this is just meant as intuition

EXAMPLE: Say
$$f:V \rightarrow \{0, \frac{1}{2}, 1\}$$

$$f(D) = 1$$

$$f(A) = 1$$

$$f(C) = 0$$

$$f(B) = X$$

$$R(x) = \frac{\left| 1 - x \right| + \left| x - 0 \right| + \left| x - 1 \right|}{\left| 1 - x \right| + \left| x - 0 \right| + \left| x - 1 \right| + \left| 1 - 0 \right| + \left| 1 - 0 \right|}$$

 $\varphi(G) = \min_{f: V \in \mathbb{R}} \frac{\sum_{\{u,v\} \in E} |f(u) - f(v)|}{\sum_{\{u,v\} \in \binom{V}{2}\}} |f(u) - f(v)|}$

Call this R(f)

for
$$\chi \in [0, 1]...$$

$$R(x) = \frac{(1-\chi) + (\chi-0) + (1-\chi)}{(1-\chi) + (\chi-0) + (1-\chi) + 2} = \frac{2-\chi}{4-\chi}$$

Note: this is just meant as intuition

EXAMPLE: Say
$$f:V \rightarrow \{0, \frac{1}{2}, 1\}$$

$$f(D) = 1$$

$$A$$

$$f(A) = 1$$

$$C$$

$$F(C) = C$$

$$F(B) = X$$

$$\varphi(G) = \min_{f: \forall f \in \mathbb{R}} \frac{\sum_{\{u,v\} \in E} |f(u) - f(v)|}{\sum_{\{u,v\} \in \binom{V}{2}\}} |f(u) - f(v)|}$$

$$Call this R(f)$$

for
$$\chi \in [0, 1]$$
... $R(x) = \frac{\lambda - x}{4 - x}$

Note: this is just meant as intuition

EXAMPLE: Say
$$f:V \rightarrow \{0, \frac{1}{2}, 1\}$$

$$f(D) = 1$$

$$A$$

$$f(A) = 1$$

$$B$$

$$f(C) = 0$$

$$f(B) = X$$

for
$$\chi \in [0, 1]$$
... $R(x) = \frac{\lambda - x}{4 - x}$

· This will always be either (weakly) increasing or decreasing.

Note: this is just meant as intuition

EXAMPLE: Say
$$f:V \rightarrow \{0, \frac{1}{2}, 1\}$$

$$f(D) = 1$$

$$f(A) = 1$$

$$f(B) = X$$

$$\varphi(G) = \min_{f: \forall f \in \mathbb{R}} \frac{\sum_{\{u,v\} \in E} |f(u) - f(v)|}{\sum_{\{u,v\} \in \binom{V}{2}\}} |f(u) - f(v)|}$$

$$Call this R(f)$$

for
$$\chi \in [0, 1]$$
... $R(x) = \frac{\lambda - x}{4 - x}$

- · This will always be either (weakly) increasing or decreasing.
- If we replace f with

Note: this is just meant as intuition

$$\varphi(G) = \min_{f: V \in \mathbb{R}} \frac{\sum_{\{u,v\} \in E} |f(u) - f(v)|}{\sum_{\{u,v\} \in \binom{V}{2}\}} |f(u) - f(v)|}$$

• \Rightarrow There is a finf: $V \rightarrow \mathbb{R}$ that minimizes $\mathbb{R}(f)$ that takes only two values.

Note: this is just meant as intuition

$$\varphi(G) = \min_{f: \forall \in \mathbb{R}} \frac{\sum_{\{u_i v\} \in E} |f(u) - f(v)|}{\sum_{\{u_i v\} \in \binom{V}{2}\}} |f(u) - f(v)|}$$

From before:

$$\varphi(G) = \min_{f: \forall y \in V} \frac{\sum_{\{u,v\} \in E} |f(u) - f(v)|}{\sum_{\{u,v\} \in \binom{V}{2}\}} |f(u) - f(v)|}$$

We just showed that the min over $f: V \to \mathbb{R}$ is actually attained by some $f: V \to \{0,1\}$.

$$\varphi(G) = \min_{f: V \in \mathbb{R}^k} \frac{\sum_{\{u_i v_3 \in E \ || f(u) - f(v) ||_1}}{\sum_{\{u_i v_3 \in \binom{V}{2}\}} || f(u) - f(v) ||_1}$$

$$\begin{aligned} & \| f - f \| \cdot \| \to \mathbb{R}^{k}, \quad \text{say} \quad f(x) = \left(f_{i}(x)_{j} \dots, f_{k}(x) \right) \\ & \frac{\sum_{\{u,v\} \in E} \| f(u) - f(v) \|_{1}}{\sum_{\{u,v\} \in E} \| f(u) - f_{i}(v) \|_{2}} = \frac{\sum_{i=1}^{k} \left(\sum_{\{u,v\} \in E} | f_{i}(u) - f_{i}(v) | \right)}{\sum_{i=1}^{k} \left(\sum_{\{u,v\} \in \binom{V}{2}\}} | f_{i}(u) - f_{i}(v) | \right)} \geq \min_{i} \frac{\sum_{\{u,v\} \in E} | f_{i}(u) - f_{i}(v) |}{\sum_{\{u,v\} \in \binom{V}{2}\}} | f_{i}(u) - f_{i}(v) |} \end{aligned}$$

$$\text{this is the case where } f : V \to \mathbb{R}$$

So adding more dimensions to f can't make this value any smaller than $f: V \to \mathbb{R}$

Conclusion

$$\varphi(G) = \min_{f:V \to \mathbb{R}^k} \frac{\sum_{\{u,v\} \in E} \|f(u) - f(v)\|_1}{\sum_{\{u,v\} \in \binom{V}{2}} \|f(u) - f(v)\|_1}$$

• Next up: using this to design an algorithm!

Let's come up with an algorithm!

- Hope: find f to minimize $R(f) := \frac{\sum_{\{u,v\} \in E} \|f(u) f(v)\|_1}{\sum_{\{u,v\} \in \binom{V}{2}} \|f(u) f(v)\|_1}$
 - Unfortunately that's not so easy...
- Instead,

Find values $d_{u,v} \in \mathbb{R}$ for all $u \neq v \in V$ to minimize

$$Q(d) := \sum_{\{u,v\} \in E} d_{u,v}$$

subject to:

- $d_{u,v} = d_{v,u} \ge 0$ for all u, v
- $d_{u,v} + d_{v,w} \ge d_{u,w}$ for all u, v, w
- $\sum_{\{u,v\}\in\binom{V}{2}} d_{u,v} = 1$

This is a **linear program.** Turns out we can solve it efficiently.

Group Work!

- 2. Suppose that d^* is the minimizer of the problem above. Explain why $Q(d^*) \leq \phi(G)$.
- 3. Find a randomized algorithm to approximate $\phi(G)$. More precisely, give a randomized algorithm that finds $f: V \to \mathbb{R}^k$ so that, with high probability,

$$\frac{\sum_{\{u,v\}\in E} \|f(u) - f(v)\|_1}{\sum_{\{u,v\}\in \binom{V}{2}} \|f(u) - f(v)\|_1} \le O(\log n)\phi(G).$$

4. Given f as in the previous part, explain how to efficiently find a set $S \subset V$ so that

$$\phi(G, S) \le O(\log n)\phi(G).$$

Find values $d_{u,v} \in \mathbb{R}$ for all $u \neq v \in V$ to minimize

$$Q(d) := \sum_{\{u,v\} \in E} d_{u,v}$$

subject to:

- $d_{u,v} = d_{v,u} \ge 0$ for all u, v• $d_{u,v} + d_{v,w} \ge d_{u,w}$ for all u, v, w• $\sum_{\{u,v\} \in \binom{V}{2}} d_{u,v} = 1$

$$\varphi(G) = \underset{f: V \to \mathbb{R}^k}{\text{quinge}} \frac{\sum_{\substack{\{u,v\} \in \mathbb{E} \\ \{u,v\} \in \binom{V}{2}\}}} ||f(u) - f(v)||_{1}}{\sum_{\substack{\{u,v\} \in \binom{V}{2}\}}} ||f(u) - f(v)||_{1}}$$

$$Q(d) = \sum_{\{u,v\} \in E} d_{u,v} = \frac{\sum_{\{u,v\} \in E} d_{u,v}}{\sum_{\{u,v\} \in \binom{V}{2}} d_{u,v}}$$

min
$$\mathbb{Q}(d) = \sum_{u,v} \mathbf{g} \in d_{u,v}$$

s.t. $d_{u,v} = d_{v,u} \ge 0 \quad \forall u,v$
 $d_{u,v} + d_{v,w} \ge d_{u,w} \quad \forall u,v,w$
 $\sum_{\{u,v\} \in \binom{v}{2}} d_{u,v} = 1$

Let
$$d_f(u,v) = \frac{\|f(u) - f(v)\|_1}{\sum_{u,v} ||f(u) - f(v)||_1}$$

$$\mathbb{Q}(d_{\mathfrak{f}}) = \mathbb{R}(\mathfrak{f})$$

• d_f is a metric, and in particular it satisfies these constraints.

• Thus, for all
$$f: V \to \mathbb{R}^k$$
, $Q(d^*) \leq Q(d_f) = R(f)$

•
$$\Rightarrow Q(d^*) \le \min_f R(f) = \phi(G)$$

min
$$\mathbb{Q}(d) = \sum_{\substack{fu_1 v_2 \in E}} du_1 v$$

s.t. $du_1 v = dv_1 u \ge O$ $\forall u_1 v$
 $du_1 v + dv_1 w \ge du_1 w$ $\forall u_1 v, w$
 $\sum_{\substack{\{u_1 v_2 \in \binom{v}{2} \\ 2}} du_1 v = 1$

Let
$$d_f(u,v) = \frac{\|f(u) - f(v)\|_1}{\sum_{u,v} e(v)} \|f(u) - f(v)\|_1$$

$$\mathbb{Q}(d_{\mathfrak{f}}) = \mathbb{R}(\mathfrak{f})$$

Find a randomized alg. to approximate $\phi(G)$

3. Find a randomized algorithm to approximate $\phi(G)$. More precisely, give a randomized algorithm that finds $f: V \to \mathbb{R}^k$ so that, with high probability,

$$\frac{\sum_{\{u,v\}\in E} \|f(u) - f(v)\|_1}{\sum_{\{u,v\}\in \binom{V}{2}} \|f(u) - f(v)\|_1} \le O(\log n)\phi(G).$$

Technically a pseudo-metric.

Find a randomized alg. to approximate $\phi(G)$

- This was the warm-up problem!
 - · Find d*, and interpret it as a metric.
 - Use Bourgain's embedding on d^* to obtain $f: V \to \mathbb{R}^k$ so that $\frac{k}{b \log n} d^*(u,v) \leq \|f(u) - f(v)\|_1 \leq k d^*(u,v) \quad \forall u,v.$
 - Following logic from the warm-up exercise, $R(f) \in \mathcal{O}(\log n) \, \mathcal{Q}(d^*) = \mathcal{O}(\log n) \, \mathcal{Q}(G)$

4. Given f as in the previous part, explain how to efficiently find a set $S \subset V$ so that

 $\phi(G, S) \le O(\log n)\phi(G)$.

The final algorithm

- · Find d* by solving the linear program.
- · Find f: V > IR by applying Bourgain's embedding to d*

• Write
$$f(x) = (f_i(x), ..., f_k(x))$$
 and find $i^* = \operatorname{argmin} \frac{\sum_{\{u_i v\} \in E} |f_i(u) - f_i(v)|}{\sum_{\{u_i v\} \in \binom{V}{2}\}} |f_i(u) - f_i(v)|}$

- · While fi(x) takes on > 3 distinct values a, < a2 < a3 < ...
 - · Set a to either a or as, whichever makes R(fi) smaller.
- When f_i only takes 2 values, a_1 , a_2 , set $f_i \leftarrow \frac{f_i a_1}{a_2 a_1}$

• Return
$$S = \{ u \in V : f_i(u) = 1 \}$$

Recap

• We can find approximately-sparsest cuts efficiently!

• Step 1:
$$\varphi(G) = \min_{f: V \to \mathbb{R}^k} \frac{\sum_{\{u,v\} \in E} \|f(u) - f(v)\|_1}{\sum_{\{u,v\} \in \binom{V}{2}} \|f(u) - f(v)\|_1}$$

- Step 2: Use an LP to to find **some** metric d^* (not necessarily an ℓ_1 metric) so that this quantity is small.
- Step 3: Use Bourgain's embedding to find some f so that $||f(u) f(v)||_1 \approx d^*(u, v)$, so that this quantity is still pretty small.
- Step 4: Reverse-engineer Step 1 to find an actual cut S, S.