(CS265, Fall 2022

Class 7: Agenda and Questions

1 Announcements

e HW3 due Friday
e Please fill out survey!

e Starting today I'll post my in-class slides. (If you want to see any particular slides
from before today, let me know).

2 Warm-Up
Group Work

Let G = (V, E) be a weighted, undirected graph, on n vertices with edge weights w,
on the edge {u,v} € E. Let d: V x V — R be the associated graph metric.

Explain how to efficiently find and apply a map f : V — R¥, for k = O(log®n), so that

3 upes 1 F() = F)lh | Tumesdn)
> mre(t) 1@ = 7T = Otlos )Z{u,v}e@) d(u, )

holds with high probability. Above, (‘2/) refers to the set of all unordered pairs {u, v} for
u,v € V and u # v.

3 Lecture Recap and Questions?

Any questions from the mini-lectures or pre-class-quiz? (Metric Embeddings; Bourgain’s
Embedding)

4 Sparsest Cuts

[Some slides; summary is below]
For a graph G = (V, E), define
[E(S, 9)|
¢(G,5) = =
|51

and

o(G) = SC\I/I,lsi';l(/),V o(G,9),

1



where above S := V' \ S denotes the complement of S, and E(S, S) denotes the set of edges
that have one endpoint in S and one endpoint in S.

Intuitively, if ¢(G, S) is small, then S is pretty “disconnected” from S. Notice that the
denominator, |S||S|, is the number of edges that would be between S and S in the complete
graph, so ¢(G, S) is the fraction of possible edges between S and S that actually exist in G.

Finding S to minimize ¢(G, S) is useful, for example, in clustering applications. However,
it’s also NP-hard. Today we’ll see a randomized algorithm to find an S so that ¢(G,S) is
approzimately minimized. More precisely, we’ll find S so that ¢(S,G) < O(logn)o(G).

Question: How is this definition of ¢(G) different than simply asking for the minimum
cut? When might you prefer a sparsest cut to a min cut? (Recall we saw a randomized
algorithm for the minimum cut back in Week 1...)

4.1 Connection to metrics
Group Work

In this group work, you will show that

— Z{u,v}EE ||f(u) - f(U)||1
A = S tuare(s) 1@ = F@)II 1)

where the minimum is over all functions f : V — R¥ for some k, so that f takes on
at least two distinct values. (This last bit is needed so that the denominator doesn’t
vanish).

1. Show that
> tuwyer | (W) — f(v)]

= min 5
F:V—={0,1} Z{W}e(g) |f(u) — f(v)]
where the minimum is over all functions f : V' — {0,1} so that f takes on both

values 0 and 1. (The difference between this and the expression above is that f
maps to {0, 1} instead of R* for some k).

Hint: Consider mapping functions f to sets S by the relationship S = {u : f(u) =
1}.

2. Think about why the above extends to show that

L Sheeli@) — f0)
MO = S e [F@) = FOOT

¢(G)

where now the minimum is over f:V — R instead of f: V — {0, 1}.

(Don’t worry about a formal proof here, just kind of convince yourself intuitively
that this is true).




Hint: Using part (a), it suffices to show that the infimum over all f : V — R is
actually attained by some f that maps vertices in V to {0,1}. To see this, consider
the following steps:

e Suppose that f : 'V — R takes on three distinct values, a < b < c. Consider
a new function f, : V. — R, so that f,(u) = x if f(u) =b, and f.(u) = f(u)
otherwise. That is, f.(u) just replaces the value b with x. Show that either

R(fa) < R(f) or  R(f) < R(f),

where

_ Z{u,v}eE |f(u) = f(v)]
Z{u,y}e(‘;) |f(u) = f)]

(That is, by sliding the middle value b towards either a or ¢, you can decrease
this quantity.)

Sub-hint: when you vary x € [a,c], you can get rid of the absolute values in
R(f.). Looking at a small ezample might be helpful.

R(f)

o Argue that the above logic implies that there’s an f that attains the infimum
that takes on only two values.

o Argue that those two values may as well be 0 and 1.

3. Think about why the above extends to show that

— min Z{u,v}EE Hf(u) - f(v)Hl
o(G) = FVSRE Z{u,v}e(‘g) I f(w) — f(v>||17

where the minimum is over all functions f : V — R* for any k.

2%

Hint: You may want to use the inequality that S

> min; @ for a;,b; > 0.

4.2 A randomized algorithm

Group Work

1. Based on the result that we got in the first group work, we might think of the
following approach:

Find f : V — R* to minimize

 Seslf) = FO)ls
M) = S ey TF@ = T

Unfortunately, this doesn’t turn out to be an easy optimization problem to solve.




Instead, we’ll consider the optimization problem:

Find values d,,, € R for all w # v € V to minimize

Q)= > duy
{uv}€E
subject to:
® dy,=d,, >0 for all u,v
® dy,+ dyyw > dy, for all u,v,w
[ ] Z{u,v}e(g) du,v = 1

It turns out that this problem can be solved efficiently, using linear programming.
(If you don’t know what that is, it’s okay, all that matters now is that we can find

-

d to minimize this efficiently).

(There’s no question for this part, just understand the optimization problem.)
. Suppose that d* is the minimizer of the problem above.

Explain why Q(d*) < ¢(G).

. Find a randomized algorithm to approximate ¢(G). More precisely, give a random-
ized algorithm that finds f : V — R¥ so that, with high probability,

P umes 170 = F0)_
> twpe(y) @) = 7O

O(logn)o(G).

Hint: Your warm-up exercise might be relevant.

Hint: If it comes up, you may assume that Bourgain’s embedding works just fine on
pseudo-metrics, which are functions d(u,v) that obey all of the axioms of metrics
except that maybe d(u,v) =0 for u # v.

. Given f as in the previous part, explain how to efficiently find a set S C V' so that
¢(G, S) < O(logn)9(G).

Hint: Our proof in the first group-work was somewhat algorithmic...




	Announcements
	Warm-Up
	Lecture Recap and Questions?
	Sparsest Cuts
	Connection to metrics
	A randomized algorithm


