Class 8

Locality Sensitive Hashing

Announcements

- HW3 due tomorrow!
- HW4 out now!
- Please fill out feedback form!

Recap

• Johnson-Lindenstrauss Transforms!

Recap

• Intro to Nearest Neighbor Search

Method	Space	Query Time
Linear scan	O(nd)	O(nd)
Various ways of generalizing the $d=1$ solution	$n^{O(d)}$	$d^{O(1)}\log n$
Other heuristics	O(nd)	$\Omega(n)$ in the worst case

c-near neighbors

(For today all of our points live on the unit sphere.)

Given y, find x; so that
$$\|y-x_i\|_2 \leq c \left(\min \|y-x_i\|_2 \right)$$

$$\frac{\text{GOALS}:}{\cdot \text{Space}} = (d \cdot n)^{O(1)}$$

· Query time = o(N)

c-near-neighbors

Surface of that this slide is the unit sphere.

Okay to return this.

Today: (r, c)-near-neighbors

Before:

Given y, find
$$x_j$$
 so that $\|y-x_j\|_2 \le c \left(\min \|y-x_i\|_2\right)$

(For today all of our points live on the unit sphere.)

Given y so that
$$\min_i \|y - x_i\|_2 \le r$$

find x_j so that $\|y - x_j\|_2 \le c \cdot r$

GOALS:

• Space =
$$(d \cdot n)^{O(1)}$$

• Query time = $o(n)$

(r, c)-near-neighbors

Imagine that this slide is the unit sphere.

Okay to return this.

c-NN vs (r, c)-NN

Fact

• If you can solve (r,c)-nearest neighbors then you can (basically) solve c-nearest neighbors.

• (See lecture notes).

Goal for today

• A solution to (r, c)-approximate nearest neighbors.

- Tool: Locality-Sensitive Hashing.
 - Points that are near to each other have a good probability of colliding.
 - Points that are far from each other are unlikely to collide.
- Strategy:
 - Data structure: hash all the x_i
 - To query, hash y. Return anything in y's bucket.

Our strategy will actually be slightly more complicated than this, but this is the basic idea...

- Let $A \in \mathbb{R}^{k \times d}$ have i.i.d. N(0,1) entries.
 - Here, $k = \frac{\pi \log n}{2r}$ (we'll see why later).

 \boldsymbol{A}

- Let $A \in \mathbb{R}^{k \times d}$ have i.i.d. N(0,1) entries.
 - Here, $k = \frac{\pi \log n}{2r}$ (we'll see why later).
- Define h(x) = sign(Ax)

A

- Let $A \in \mathbb{R}^{k \times d}$ have i.i.d. N(0,1) entries.
 - Here, $k = \frac{\pi \log n}{2r}$ (we'll see why later).
- Define h(x) = sign(Ax)

- Let $A \in \mathbb{R}^{k \times d}$ have i.i.d. N(0,1) entries.
 - Here, $k = \frac{\pi \log n}{2r}$ (we'll see why later).
- Define h(x) = sign(Ax)

Actually choose s independent copies of this

- Choose $s = \sqrt{n}$
- Choose $k = \frac{\pi \log n}{2r}$
- For i = 1, ..., s:
 - Let $A_i \in \mathbb{R}^{k \times d}$ have i.i.d. N(0,1) entries.
 - Define $h_i(x) = \operatorname{sign}(A_i x)$

Outline of group work

- First (problems 1-5) you will show that:
 - If x, y are close, then probably there's some i so that $h_i(x) = h_i(y)$
 - If x, y are far, then probably there's no such i.
- Then (problems 6,7), you will show how to use this to get a (c,r)-near-neighbors scheme.

Group work!

(the font is small...look at handouts!)

1. Consider a hash function $h_i: \mathbb{S}^d \to \{\pm 1\}^k$ as defined above. Explain why " $h_i(x) = h_i(y)$ " has the following geometric meaning:

Imagine choosing k uniformly random hyperplanes in \mathbb{R}^d , and using them to slice up the sphere \mathbb{S}^d like this:

Then $h_i(x) = h_i(y)$ if and only if x and y are in the same "cell" of this slicing. For example, in the picture below $h_i(x) = h_i(y) \neq h_i(z)$.

2. Explain why, for $x, y \in \mathbb{S}^d$, and for any i = 1, ..., s,

$$\Pr[h_i(x) = h_i(y)] = \left(1 - \frac{\operatorname{angle}(x, y)}{\pi}\right)^k,$$

where $\operatorname{angle}(x,y) = \arccos(x^T y)$ is the arc-cosine of the dot product of x and y, aka, the angle between x and y.

Hint: Think about the geometric intuition in the plane spanned by x and y.

3. Suppose that $x, y \in \mathbb{S}^d$. Fill in the blank, using the previous part:

$$\Pr[\forall i \in \{1, ..., s\}, h_i(x) \neq h_i(y)] =$$

(Don't worry about simplifying, you'll do that in the next part).

4. Let $x, y \in \mathbb{S}^d$ and suppose that the angle between x and y is pretty small. Using our choices of s and k above, along with extremely liberal use of the approximation that $1 - x \approx e^{-x}$ for small x, convince yourself that

$$\Pr[\forall i \in \{1,\ldots,s\}, h_i(x) \neq h_i(y)] \approx \exp\left(-n^{1/2-\operatorname{angle}(x,y)/(2r)}\right).$$

- 5. Fill in the blanks (assuming that your approximation from the previous step is valid):
 - (a) If $angle(x, y) \leq r$, then

$$\Pr[\exists i \in \{1,\ldots,s\} \text{ so that } h_i(x) = h_i(y)] \geq \ldots$$

(b) If $angle(x, y) \ge 5r$, then

$$\Pr[\exists i \in \{1, ..., s\} \text{ so that } h_i(x) = h_i(y)] \leq$$

• For each row a^T of A, we have a hyperplane $\{x \in \mathbb{R}^d : a^Tx = 0\}$.

- For each row a^T of A, we have a hyperplane $\{x \in \mathbb{R}^d : a^Tx = 0\}$.
- If the corresponding coordinate of Ax is negative, then x lies on one side of the hyperplane, else x lies on the other.

- For each row a^T of A, we have a hyperplane $\{x \in \mathbb{R}^d : a^Tx = 0\}$.
- If the corresponding coordinate of Ax is negative, then x lies on one side of the hyperplane, else x lies on the other.
- Same cell = same side of every hyperplane = same sign in every coordinate.

$$P\{some hyperplane \} = \frac{arclength of}{TT} = \frac{angle(x,y)}{TT}$$

$$h_i(x) \neq h_i(y) \Leftrightarrow some hyperplane does this$$

$$P\{some hyperplane\} = \frac{arclength of}{TT} = \frac{angle(x_1y_1)}{TT}$$

$$h_i(x) \neq h_i(y) \Leftrightarrow some hyperplane does this$$

$$\Pr[\forall i \in \{1, ..., s\}, h_i(x) \neq h_i(y)] =$$

Q2:
$$Pr[h_i(x) = h_i(x)] = (1 - angle(x, y)/\pi)^k$$

$$\Pr[h_i(x) = h_i(y)] \text{ for any one } i$$

$$\Pr[h_i(x) \neq h_i(y)] = \left(1 - \frac{\text{angle}(x,y)}{\text{Index}(x,y)} \right)^{s}$$

$$\Pr[h_i(x) \neq h_i(y)] \text{ for all s values of } i$$

With our choice of
$$s=\sqrt{n}$$
, $k=\frac{TT\log n}{2r}$,

$$P\{\forall i, h_i(x) \neq h_i(y)\} = (1-(1-\frac{\log(\log n))}{T})^{\sqrt{n}}$$

$$\approx (1-\exp(-\frac{\log(n)\cdot \operatorname{angle}(x_iy)}{2r})$$

$$\approx \exp(-\sqrt{n}\cdot n)^{-\frac{\log(\log(x_iy))}{2r}}$$

$$= \exp(-n)^{\frac{\log(n)}{2r}} - \frac{\log(\log(x_iy))}{2r}$$

Question 5(a)

Question 5(a)

If
$$angle(x,y) \leq \tau$$
,

$$\mathbb{P}\left\{\forall i, h_i(x) + h_i(y)\right\} \propto \exp\left(-n^{\frac{1}{2} - \frac{\log \log(x_i y)}{2}r}\right) \geq \exp\left(-1\right)$$

$$\mathbb{P} \{ \exists i, h_i(x) = h_i(y) \} \ge 1 - 1/e$$

Question 5(b)

Question 5(b)

If angle(
$$x_1y_1$$
) $\geq 5r$, $exp(-n^{1/2} - angle(x_1y_1)/2r) < exp(-n^{1/2} - 5/2)$

$$= exp(-n^{-2})$$

$$\approx 1 - \frac{1}{n^2}$$

$$\mathbb{P} \left\{ \exists i, h_i(x) = h_i(y) \right\} \leq |\chi|^2$$

- Query Algorithm:
 - For i = 1, 2, ..., s:
 - Compute $h_i(y)$
 - If there's some x_j so that $h_i(x_j) = h_i(y)$, return it.

- Query Algorithm:
 - For i = 1, 2, ..., s:
 - Compute $h_i(y)$
 - If there's some x_j so that $h_i(x_j) = h_i(y)$, return it.
- If $angle(y, x_{\ell}) \le r$, then with decent probability there's some i so that $h_i(x_{\ell}) = h_i(y)$.
 - In particular, the algorithm will return something.

- Query Algorithm:
 - For i = 1, 2, ..., s:
 - Compute $h_i(y)$
 - If there's some x_j so that $h_i(x_j) = h_i(y)$, return it.
- If $angle(y, x_{\ell}) \le r$, then with decent probability there's some i so that $h_i(x_{\ell}) = h_i(y)$.
 - In particular, the algorithm will return something.
- If the algorithm returns x_i then with high probability angle $(y, x_i) \le 5r$.
 - If $angle(y, x_j) > 5r$, $Pr[\exists i, h_i(x_j) = h_i(y)] \le \frac{1}{n^2}$, and we can union bound over all x_j to say that never happens whp.

Using
$$\frac{2}{\pi}$$
 angle $(x, y) \le ||x - y||_2 \le \text{angle}(x, y)$, we can conclude:

• If angle
$$\{x,y\} \leq T$$
, $\{x\} = \{x\}$, $\{x\} = \{x\}$, $\{x\} = \{x\}$.

• If angle
$$(x_1, y_1) \ge 5r$$
, $f(x) = h(y_1) \le h^2$

$$||x - y_1||_2 \ge 5r$$
So just fiddle with the value

So just fiddle with the value of "c" and the same analysis will still work.

Wrapping up: Time and Space

 $k = O(\log n)$ $s = \sqrt{n}$

• Space:

• Update time:

Wrapping up: Time and Space

• Space:

- s different $k \times d$ matrices A_i : $O(d \cdot \sqrt{n} \cdot \log n)$
- s hash tables, each with 2^k buckets: $O(\sqrt{n} \cdot 2^{O(\log n)}) = n^{O(1)}$
- The elements of S themselves: O(nd)

• Update time:

Wrapping up: Time and Space

- Space: $n^{O(1)}$
 - s different $k \times d$ matrices A_i : $O(d \cdot \sqrt{n} \cdot \log n)$
 - s hash tables, each with 2^k buckets: $O(\sqrt{n} \cdot 2^{O(\log n)}) = n^{O(1)}$
 - The elements of S themselves: O(nd)
- Update time:

Wrapping up: Time and Space

- Space: $n^{O(1)}$
 - s different $k \times d$ matrices A_i : $O(d \cdot \sqrt{n} \cdot \log n)$
 - s hash tables, each with 2^k buckets: $O(\sqrt{n} \cdot 2^{O(\log n)}) = n^{O(1)}$
 - The elements of S themselves: O(nd)

Update time:

- s different $k \times d$ matrix-vector multiplies: $O(s \cdot k \cdot d) = O(d\sqrt{n} \cdot \log n)$
- Going through all s hash tables and look in $h_i(y)$'s bucket to see if there's anything else: $O(s) = O(\sqrt{n})$

Wrapping up: Time and Space

- Space: $n^{O(1)}$
 - s different $k \times d$ matrices A_i : $O(d \cdot \sqrt{n} \cdot \log n)$
 - s hash tables, each with 2^k buckets: $O(\sqrt{n} \cdot 2^{O(\log n)}) = n^{O(1)}$
 - The elements of S themselves: O(nd)
- Update time: $O(d \cdot \sqrt{n} \cdot \log n) = o(n)$ when d isn't too big.
 - s different $k \times d$ matrix-vector multiplies: $O(s \cdot k \cdot d) = O(d\sqrt{n} \cdot \log n)$
 - Going through all s hash tables and look in $h_i(y)$'s bucket to see if there's anything else: $O(s) = O(\sqrt{n})$

Recap

• We can use dimension reduction (that smells a bit like JL) to make an efficient c-near-neighbors algorithm!