Class 8

Locality Sensitive Hashing

Announcements

e HW3 due tomorrow!
e HW4 out now!
e Please fill out feedback form!

Recap

* Johnson-Lindenstrauss Transforms!

Recap

* Intro to Nearest Neighbor Search

Method Space Query Time

Linear scan 0(nd) 0(nd)

Various ways of
generalizing the TlO(d) do(l) lOng
d = 1 solution

Other heuristics O(TLd) 'Q(n)

in the worst case

c-near neighbors

Given % , Rad XL) so that
Iyl < c(malyxl,)

d
0‘ (um‘rsp\ami/\ K) GokLs -

- Space = (din)

- Q\m% Mg = o(YL>

J O(i)
S:’ iX” XZ)"‘J ans g S

(For today all of our points live on the unit sphere.)

c-near-neighbors

Okay to return this.

Before:

Given ’\é, fnd XO so Ythat

Today: (1, ¢)-near-neighbors PRI

Quven Y o that min; “’5- Xillqg <

ﬁ'nd ’)L\)' SO Jrhcd' ”%"X\j“a < Cvy

d
o\ (uni%sp\amm K) GokLs -

- Space = (din)

- Q\m% Mg = o(YL>

J O(i)
S: ixl) Xz)-—-J ans C S

(For today all of our points live on the unit sphere.)

(r, c)-near-neighbors

Okay to return this.

c-NN vs (7, c)-NN

r= miin(“Xi —y||2)

Okay to return this. Okay to return this.

Fact

* If you can solve (7, ¢)-nearest neighbors then you can (basically) solve
c-nearest neighbors.

* (See lecture notes).

Goal for today

* A solution to (7, ¢)-approximate nearest neighbors.

* Tool: Locality-Sensitive Hashing.
* Points that are near to each other have a good probability of colliding.
* Points that are far from each other are unlikely to collide.

° Strategy: Our strategy will

actually be slightl
e Data structure: hash all the x; more glomplicgaqtezil

* To query, hash y. Return anything in y’s bucket. than this, but this is
the basic idea...

Our Locality Sensitive Hashing Scheme

Our Locality Sensitive Hashing Scheme

* Let A € R**4 have i.i.d. N(0,1) entries.

T logn

* Here, k = (we’ll see why later).

Our Locality Sensitive Hashing Scheme

* Let A € R**4 have i.i.d. N(0,1) entries.

T logn

* Here, k = (we’ll see why later).

* Define h(x) = sign(A4x)

A

Our Locality Sensitive Hashing Scheme

* Let A € R**4 have i.i.d. N(0,1) entries.

T logn

* Here, k = (we’ll see why later).

* Define h(x) = sign(A4x)

0.2
—-1.3
A - 0.7
3.2
—50
0.01

Ax

Our Locality Sensitive Hashing Scheme

* Let A € R**4 have i.i.d. N(0,1) entries.

T logn

* Here, k = (we’ll see why later).

* Define h(x) = sign(A4x)

0.2 +1

—1.3 -1

= |07 +1

A 2, | EEEE) |
—50 -1

0.01 +1

Ax h(x)

Actually choose s independent copies of this

e Choose s =+/n

T logn
* Choose k = 5

2T
eFori=1,..,s:

* Let 4; € R*¥*? have i.i.d. N(0,1) entries.
* Define h;(x) = sign(4;x)

Outline of group work

* First (problems 1-5) you will show that:
* If x,y are close, then probably there’s some i so that h;(x) = h;(y)
* If x,y are far, then probably there’s no such i.

* Then (problems 6,7), you will show how to use this to geta (¢, 7)-
near-neighbors scheme.

Group work!

(the font is small...look at handouts!)

1. Consider a hash function h; : S* — {£1}* as defined above. Explain why “hi(z) =
hi(y)” has the following geometric meaning:

Imagine choosing k uniformly random hyperplanes in R¢, and using them
to slice up the sphere S like this:

Then h;(z) = h;(y) if and only if z and y are in the same “cell” of this
slicing. For example, in the picture below h;(z) = h;(y) # hi(z).

N

Explain why, for z,y € §¢, and for any i = 1,...,s,
angle(z, y) k
Prlhi(z) = hi(y)] = (1 I ’))

where angle(z,y) = arccos(z”y) is the arc-cosine of the dot product of z and v,
aka, the angle between = and y.

Hint: Think about the geometric intuition in the plane spanned by x and y.
Suppose that z,y € S¢. Fill in the blank, using the previous part:

Pr[Vi e {1,...,s}, hi(z) # hi(y)] = ——

(Don’t worry about simplifying, you’'ll do that in the next part).

Let z,y € S? and suppose that the angle between x and y is pretty small. Using
our choices of s and k above, along with extremely liberal use of the approximation
that 1 — z &~ e * for small z, convince yourself that

Pr[Vi € {1,..., s}, hi(z) # hi(y)] = exp (—n'/2-2velel=a)/@r))

Fill in the blanks (assuming that your approximation from the previous step is
valid):

(a) If angle(z,y) < r, then
Pr(3i € {1,...,s} so that hi(z) = hi(y)] > ——
(b) If angle(z,y) > 5r, then

Pr[3i € {1,...,s} so that h;(z) = h;i(y)] < ———.

Interpreting “h(x) = h(y)”

Question 1

0.2 +1

-1.3 -1

= 0.7 - +1

A 3.2 +1
—50 -1

0.01 +1

Ax h(x)

Interpreting “h(x) = h(y)”

Question 1

* For each row a” of 4, we have a hyperplane {x € R? : a’x = 0}.

0.2 +1

-1.3 -1

= 10.7 ‘ +1

T A 3.2 +1
a —50 —1
0.01 +1

Ax h(x)

Interpreting “h(x) = h(y)”

Question 1

* For each row a” of 4, we have a hyperplane {x € R? : a’x = 0}.

* If the corresponding coordinate of Ax is negative, then x lies on one side
of the hyperplane, else x lies on the other.

0.2 +1

-1.3 -1

= 10.7 +1

i A 2o | === T
a —50 —1
0.01 +1

Ax h(x)

Interpreting “h(x) = h(y)”

Question 1

* For each row a” of 4, we have a hyperplane {x € R? : a’x = 0}.

* If the corresponding coordinate of Ax is negative, then x lies on one side
of the hyperplane, else x lies on the other.

* Same cell = same side of every hyperplane = same sign in every coordinate.

0.2 +1

—1.3 —1

= 0.7 :D +1

T A 3.2 +1
a —50 —1
0.01 +1

Ax h(x)

Question 2
Prih;(x) = h;(x)] = (1 — angle(x,y)/m)"

Question 2
Prih;(x) = h;(x)] = (1 — angle(x,y)/m)"

’\%_
- X

h(x) # 9“(3) e wm\f\jm\amdoes%

Question 2
Prih;(x) = h;(x)] = (1 — angle(x,y)/m)*

M-
/ bt o Sl il L
m AU

e (X) # e\;(ﬁ) & Some hn?x?\amdo&sﬂb

Question 2
Pr[h;(x) = h;(x)] = (1 — angle(x,y)/m)"

9\ (x) # R 3) < 8 m\’\j?x?\ww_o\o&sﬂu

Wiﬁ%ﬁwﬁa&w - (1- -«

| Pr[Vi € {1,...,s}, hi(z) # hi(y)] = ——
Question 3

Q2: Pr[h;(x) = hy(x)] = (1 — angle(x,y)/m)"

Question 3

Pr[h;(x) = h;(y)] foranyonei

}r{ \v’t) e‘cm*{cln) '8 2

Pr[hl(x) * hl(y)] for any one i

Pr[h;(x) # h;(y)] for all s values of i

Question 4

Question 4

Wit our choice cnp S=n" 9& T ogn) k S
e ~N

T, 00+ (4) k M— - MB >F
w (i Q‘XE 'am s)
> 0p <~ " %Nw&w% >

Iy — anglalx,u)/
_ €XP< 9~ heeXe

Question 5(a)

Question 5(a)
[; &ﬁ%&(x,@ <7
W V[LJ QLH &(R Vy — anglelx,
% ¥ Lég)k GXP<~rV\ 9ol - >2€X]D(—’|_3

Pidi, hw-hiypzi-n

Question 5(b)

Question 5(b)

\P Qﬂ%&(x\\éB S 5() @XP<~W\\/2~ angleli,u) >\< Q)(?K”‘(\

r\)g}}% Q«(Y &%\«S /\(\2

Question 6

Question 6

* Query Algorithm:
e Fori=1,2,..,s:
* Compute h;(y)
* If there’s some x; so that hi(xj) = h;(y), return it.

Question 6

* Query Algorithm:
e Fori=1,2,..,s:
* Compute h;(y)
* If there’s some x; so that hi(xj) = h;(y), return it.

* If angle(y, xp) < r, then with decent probability there’s some i so that
hi(xp) = hi(y).

* In particular, the algorithm will return something.

Question 6

* Query Algorithm:
e Fori=1,2,..,s:
* Compute h;(y)
* If there’s some x; so that hi(xj) = h;(y), return it.

* If angle(y, xp) < r, then with decent probability there’s some i so that
hi(xp) = hi(y).

* In particular, the algorithm will return something.
* If the algorithm returns x; then with high probability angle(y, xj) < 5r.
o |If angle(y, xj) > 5r, Pr[EIi, hi(xj) = hi(y)] < n—lz, and we can union bound over all x;

to say that never happens whp.

Question 7

Question 7

Using %angle(x, y) < HX —v]| ‘2 < angle(x, y), we can conclude:

« | o <7, Tl ho-tiyp¥z1-y

Ix-Ylly €5 -0

*IE W ﬁ A, h (K\'-Qw(ﬂg\xé ~

||x — |2 =l So just fiddle with the value of “c” and the

same analysis will still work.

k = O(logn)
Wrapping up: Time and Space s=Vn

* Space:

* Update time:

k = O(logn)
Wrapping up: Time and Space s=Vn
* Space:
* s different k X d matrices A;: 0(d - +/n-logn)

e s hash tables, each with 2% buckets: O(ﬁ . 20og ”)) = no@
* The elements of S themselves: O(nd)

* Update time:

k = O(logn)
Wrapping up: Time and Space s=Vn

* Space: no@)
* s different k X d matrices A;: 0(d - +/n-logn)
« s hash tables, each with 2¥ buckets: 0(yn - 20008™) = n0)
* The elements of S themselves: O(nd)

* Update time:

k = 0(logn)
Wrapping up: Time and Space s=Vn

* Space: no@)

* s different k X d matrices A;: 0(d - +/n-logn)
« s hash tables, each with 2¥ buckets: 0(yn - 20008™) = n0)
* The elements of S themselves: O(nd)

* Update time:
« s different k X d matrix-vector multiplies: O(s - k - d) = 0(d +/n - logn)

* Going through all s hash tables and look in h;(y)’s bucket to see if there’s
anything else: 0(s) = 0(\/n)

k = 0(logn)
Wrapping up: Time and Space s=Vn

* Space: no@)

* s different k X d matrices A;: 0(d - +/n-logn)
« s hash tables, each with 2¥ buckets: 0(yn - 20008™) = n0)
* The elements of S themselves: O(nd)

* Update time: O(d : \/ﬁ : lOg n) — O(Tl) when d isn’t too big.
« s different k X d matrix-vector multiplies: O(s - k - d) = 0(d +/n - logn)

* Going through all s hash tables and look in h;(y)’s bucket to see if there’s
anything else: 0(s) = 0(\/n)

Recap

* We can use dimension reduction (that smells a bit like JL) to make an
efficient c-near-neighbors algorithm!

