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CS276A
Text Information Retrieval, Mining, and Exploitation

Lecture 1
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Query

� Which plays of Shakespeare contain the words 
Brutus AND Caesar but NOT Calpurnia?

� Could grep all of Shakespeare’s plays for Brutus
and Caesar then strip out lines containing 
Calpurnia?

� Slow (for large corpora)
� NOT is non-trivial
� Other operations (e.g., find the phrase Romans 

and countrymen) not feasible
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Term-document incidence

1 if play contains 
word, 0 otherwise

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1

Brutus 1 1 0 1 0 0

Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0

Cle opa tra 1 0 0 0 0 0

m ercy 1 0 1 1 1 1

worser 1 0 1 1 1 0
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Incidence vectors

� So we have a 0/1 vector for each term.
� To answer query: take the vectors for Brutus, 

Caesar and Calpurnia (complemented) ➨
bitwise AND.

� 110100 AND 110111 AND 101111 = 100100. 
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Answers to query

� Antony and Cleopatra, Act III, Scene ii
� Agrippa [Aside to DOMITIUS ENOBARBUS]: Why, Enobarbus,� When Antony found Julius Caesar dead,� He cried almost to roaring; and he wept� When at Philippi he found Brutus slain.

� Hamlet, Act III, Scene ii
� Lord Polonius: I did enact Julius Caesar I was killed i' the� Capitol; Brutus killed me.
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Bigger corpora

� Consider n = 1M documents, each with about 1K 
terms.

� Avg 6 bytes/term incl spaces/punctuation 
� 6GB of data.

� Say there are m = 500K distinct terms among 
these.
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Can’t build the matrix

� 500K x 1M matrix has half-a-trillion 0’s and 1’s.
� But it has no more than one billion 1’s.

� matrix is extremely sparse.
� What’s a better representation?

Why?
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� Documents are parsed to extract words and 
these are saved with the Document ID.

I did enact Julius
Caesar I was killed 

i' the Capitol; 
Brutus killed me.

Doc 1

So let it be with
Caesar. The noble

Brutus hath told you
Caesar was ambitious

Doc 2

Term Doc #
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i' 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2

caesar 2
was 2
ambitious 2

Inverted index
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� After all documents have 
been parsed the inverted 
file is sorted by terms 

Term Doc #
ambitious 2
be 2
brutus 1
brutus  2
capitol 1
caesar 1
caesar 2
caesar 2
did 1
enact 1
hath 1
I 1
I 1
i' 1
it 2
julius 1
killed 1
killed 1
let 2
me 1
noble 2
so 2
the 1
the 2
told 2
you 2
was 1
was 2
with 2

Term Doc #
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i' 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2 10

� Multiple term entries in 
a single document are 
merged and frequency 
information added

Term Doc # Freq
ambitious 2 1
be 2 1
brutus 1 1
brutus 2 1
capitol 1 1
caesar 1 1
caesar 2 2
did 1 1
enact 1 1
hath 2 1
I 1 2
i' 1 1
it 2 1
julius 1 1
killed 1 2
let 2 1
me 1 1
noble 2 1
so 2 1
the 1 1
the 2 1
told 2 1
you 2 1
was 1 1
was 2 1
with 2 1

Term Doc #
ambitious 2
be 2
brutus 1
brutus  2
capitol 1
caesar 1
caesar 2
caesar 2
did 1
enact 1
hath 1
I 1
I 1
i' 1
it 2
julius 1
killed 1
killed 1
let 2
me 1
noble 2
so 2
the 1
the 2
told 2
you 2
was 1
was 2
with 2
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� The file is commonly split into a Dictionary
and a Postings file

Doc # Freq
2 1
2 1
1 1
2 1
1 1
1 1
2 2
1 1
1 1
2 1
1 2
1 1
2 1
1 1
1 2
2 1
1 1
2 1
2 1
1 1
2 1
2 1
2 1
1 1
2 1
2 1

   
  

Term N docs Tot F req
amb itious 1 1
be 1 1
b rutus 2 2
cap itol 1 1
caesar 2 3
d id 1 1
enact 1 1
hath 1 1
I 1 2
i ' 1 1
it 1 1
julius 1 1
k illed 1 2
le t 1 1
m e 1 1
nob le 1 1
so 1 1
the 2 2
to ld 1 1
you 1 1
was 2 2
with 1 1

Term Doc # Freq
ambitious 2 1
be 2 1
brutus 1 1
brutus 2 1
capitol 1 1
caesar 1 1
caesar 2 2
did 1 1
enact 1 1
hath 2 1
I 1 2
i' 1 1
it 2 1
julius 1 1
killed 1 2
let 2 1
me 1 1
noble 2 1
so 2 1
the 1 1
the 2 1
told 2 1
you 2 1
was 1 1
was 2 1
with 2 1
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� Where do we pay in storage?

Doc # Freq
2 1
2 1
1 1
2 1
1 1
1 1
2 2
1 1
1 1
2 1
1 2
1 1
2 1
1 1
1 2
2 1
1 1
2 1
2 1
1 1
2 1
2 1
2 1
1 1
2 1
2 1

   
  

Term N docs Tot F req
amb itious 1 1
be 1 1
b rutus 2 2
cap itol 1 1
caesar 2 3
d id 1 1
enact 1 1
hath 1 1
I 1 2
i ' 1 1
it 1 1
julius 1 1
k illed 1 2
le t 1 1
m e 1 1
nob le 1 1
so 1 1
the 2 2
to ld 1 1
you 1 1
was 2 2
with 1 1

Pointers

Terms
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Two conflicting forces

� A term like Calpurnia occurs in maybe one doc 
out of a million - would like to store this pointer 
using log2 1M ~ 20 bits.

� A term like the occurs in virtually every doc, so 
20 bits/pointer is too expensive.

� Prefer 0/1 vector in this case.
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Postings file entry

� Store list of docs containing a term in increasing 
order of doc id.

� Brutus: 33,47,154,159,202 …
� Consequence: suffices to store gaps.

� 33,14,107,5,43 …
� Hope: most gaps encoded with far fewer than 20 

bits.
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Variable encoding

� For Calpurnia, use ~20 bits/gap entry.
� For the, use ~1 bit/gap entry.
� If the average gap for a term is G, want to use 

~log2G bits/gap entry.
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γ codes for gap encoding

� Represent a gap G as the pair <length,offset>
� length is in unary and uses log2G +1 bits to specify the 

length of the binary encoding of
� offset = G - 2log

2
G

� e.g., 9 represented as 1110001.
� Encoding G takes 2 log2G +1 bits.

Length Offset
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What we’ve just done

� Encoded each gap as tightly as possible, to 
within a factor of 2.

� For better tuning (and a simple analysis) - need 
some handle on the distribution of gap values.

18

Zipf’s law

� The kth most frequent term has frequency 
proportional to 1/k.

� Use this for a crude analysis of the space used 
by our postings file pointers.
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Zipf’s law log-log plot
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Rough analysis based on Zipf

� Most frequent term occurs in n docs
� n gaps of 1 each.

� Second most frequent term in n/2 docs
� n/2 gaps of 2 each …

� kth most frequent term in n/k docs
� n/k gaps of k each - use 2log2k +1 bits for each 

gap;
� net of ~(2n/k).log2k bits for kth most frequent term.
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Sum over k from 1 to 500K

� Do this by breaking values of k into groups:
group i consists of 2i-1 ≤ k < 2i.

� Group i has 2i-1 components in the sum, each 
contributing at most (2ni)/2i-1.

� Summing over i from 1 to 19, we get a net 
estimate of 340Mbits ~45MB for our index.

Work out
calculation.
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Caveats

� This is not the entire space for our index:
� does not account for dictionary storage;
� as we get further, we’ll store even more stuff in the 

index.
� Assumes Zipf’s law applies to occurrence of 

terms in docs.
� All gaps for a term taken to be the same.
� Does not talk about query processing.
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Issues with index we just built

� How do we process a query?
� What terms in a doc do we index?

� All words or only “important” ones?
� Stopword list: terms that are so common that 

they’re ignored for indexing.
� e.g., the, a, an, of, to …
� language-specific.

Exercise: Repeat postings size calculation if 100 most
frequent terms are not indexed. 24

Issues in what to index

� Coop er’s vs. Cooper vs. Coopers.
� Full -text vs. full text vs. {full, text} vs. full text.
� Accents: résumé vs. resume.

Cooper’s concordance of Wordsworth was published in 
1911.   The applications of full-text retrieval are legion: 
they include résumé scanning, litigation support and 
searching published journals on-line.
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Punctuation

� Ne’er: use language-specific, handcrafted 
“locale” to normalize.

� State-of-the-art: break up hyphenated 
sequence.

� U.S.A. vs. USA - use locale.
� a.out 

26

Numbers

� 3/12/91
� Mar. 12, 1991
� 55 B.C.
� B-52
� 100.2.86.144

� Generally, don’t index as text
� Creation dates for docs
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Case folding

� Reduce all letters to lower case
� exception: upper case in mid-sentence

� e.g., General Motors
� Fed vs. fed
� SAIL vs. sail
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Thesauri and soundex

� Handle synonyms and homonyms
� Hand-constructed equivalence classes

� e.g., car = automobile
� your ➔➔➔➔ you’re

� Index such equivalences, or expand query?
� More later ...
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Spell correction

� Look for all words within (say) edit distance 3 
(Insert/Delete/Replace) at query time

� e.g., Alanis Morisette
� Spell correction is expensive and slows the query 

(upto a factor of 100)
� Invoke only when index returns zero matches.
� What if docs contain mis-spellings?
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Lemmatization

� Reduce inflectional/variant forms to base form
� E.g.,

� am, are, is → be
� car, cars, car's, cars' → car

� the boy's cars are different colors → the boy car 
be different color

31

Stemming

� Reduce terms to their “roots” before indexing
� language dependent
� e.g., automate(s), automatic, automation all 

reduced to automat.

for example compressed 
and compression are both 
accepted as equivalent to 
compress.

for exampl compres and
compres are both accept
as equival to compres.
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Porter’s algorithm

� Commonest algorithm for stemming English
� Conventions + 5 phases of reductions

� phases applied sequentially
� each phase consists of a set of commands
� sample convention: Of the rules in a compound 

command, select the one that applies to the 
longest suffix.
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Typical rules in Porter

� sses → ss
� ies → i
� ational → ate
� tional → tion
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Other stemmers

� Other stemmers exist, e.g., Lovins stemmer 
http://www.comp.lancs.ac.uk/computing/research/stemming/general/lovins.htm

� Single-pass, longest suffix removal (about 250 
rules)

� Motivated by Linguistics as well as IR
� Full morphological analysis - modest benefits for 

retrieval
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Beyond term search

� What about phrases?
� Proximity: Find Gates NEAR Microsoft.

� Need index to capture position information in 
docs.

� Zones in documents: Find documents with 
(author = Ullman) AND (text contains automata).
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Evidence accumulation

� 1 vs. 0 occurrence of a search term
� 2 vs. 1 occurrence
� 3 vs. 2 occurrences, etc.

� Need term frequency information in docs
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Ranking search results

� Boolean queries give inclusion or exclusion of 
docs.

� Need to measure proximity from query to each 
doc.

� Whether docs presented to user are singletons, 
or a group of docs covering various aspects of 
the query.
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Structured vs unstructured data

� Structured data tends to refer to information in 
“tables”

Employee Manager Salary

Smith Jones 50000

Chang Smith 60000

50000Ivy Smith

Typically allows numerical range and exact match
(for text) queries, e.g.,
Salary < 60000 AND Manager = Smith.
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Unstructured data

� Typically refers to free text
� Allows
� Keyword queries including operators
� More sophisticated “concept” queries e.g.,
� find all web pages dealing with drug abuse

� Classic model for searching text documents
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Semi-structured data

� But in fact almost no data is “unstructured”
� E.g., this slide has distinctly identified zones such 

as the Title and Bullets
� Facilitates “semi-structured” search such as
� Title contains data AND Bullets contain search
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More sophisticated semi-
structured search

� Title is about Object Oriented Programming AND 
Author something like stro*rup

� where * is the wild-card operator
� Issues:
� how do you process “about”
� how do you rank results

� Will consider when studying XML search
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Clustering and classification

� Given a set of docs, group them into clusters 
based on their contents.

� Given a set of topics, plus a new doc D, decide 
which topic(s) D belongs to.

� Subject of CS276B next quarter.
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The web and its challenges

� Unusual and diverse documents
� Unusual and diverse users, queries, information 

needs
� Beyond terms, exploit ideas from social networks
� link analysis, clickstreams ...

44

Resources for today’s lecture

� Managing Gigabytes, Chapter 3.
� Modern Information Retrieval, Chapter 7.2
� Porter’s stemmer: 

http//www.sims.berkeley.edu/~hearst/irbook/porter.html
� Shakespeare: http://www.theplays.org
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Course administrivia

� Course URL: 
http://www.stanford.edu/class/cs276a/

� Grading:
� 20% from midterm
� 40% from final
� 40% from project.
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Course staff

� Professor: Christopher 
Manning 
Office: Gates 418
manning@cs.stanford.edu

� Professor: Prabhakar 
Raghavan 

pragh@db.stanford.edu

� Professor: Hinrich Schütze 
schuetze@csli.stanford.edu

� Office Hours: F 10-12

� TA: Taher Haveliwala
Office: Gates B24A
Office Hours: MW 1:30-3:00
taherh@cs.stanford.edu
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Course project

� 40% of grade
� Groups of 2
� Don’t build a search engine
� Lucene engine available

� Watch for more details in Oct 3 lecture


