
Fourier	
 transforms	
 and	
 convolution

CS/CME/Biophys/BMI	
 279	

Oct.	
 27	
 and	
 29,	
 2015	

Ron	
 Dror

1

(without	
 the	
 agonizing	
 pain)

Outline

• Why do we care?
• Fourier transforms

– Writing functions as sums of sinusoids
– The Fast Fourier Transform (FFT)
– Multi-dimensional Fourier transforms

• Convolution
– Moving averages
– Mathematical definition
– Performing convolution using Fourier transforms

2

Why do we care?

3

Why study Fourier transforms and
convolution?

• In the remainder of the course, we’ll study several methods
that depend on analysis of images or reconstruction of
structure from images:
– Light microscopy (particularly fluorescence microscopy)
– Electron microscopy (particularly for single-particle

reconstruction)
– X-ray crystallography

• The computational aspects of each of these methods
involve Fourier transforms and convolution

• These concepts are also important for:
– Some approaches to ligand docking (and protein-protein docking)
– Fast evaluation of electrostatic interactions in molecular dynamics
– (You’re not responsible for these additional applications) 4

Fourier transforms

5

Fourier transforms

6

Writing functions as sums of sinusoids

Writing functions as sums of sinusoids
• Given a function defined on an interval of length L,

we can write it as a sum of sinusoids whose periods
are L, L/2, L/3, L/4, … (plus a constant term)

7

Original	
 function Sum	
 of	
 sinusoids	
 below

+ + +

Decreasing	
 period	

Increasing	
 frequency

Writing functions as sums of sinusoids
• Given a function defined on an interval of length L,

we can write it as a sum of sinusoids whose periods
are L, L/2, L/3, L/4, … (plus a constant term)

8

Original	
 function sum	
 of	
 49	
 sinusoids	
 (plus	
 constant	
 term)

sum	
 of	
 50	
 sinusoids	
 (plus	
 constant	
 term)

+ +

Magnitude:	
 0.39

+

• Each of these sinusoidal terms has a magnitude
(scale factor) and a phase (shift).

Original	
 function Sum	
 of	
 sinusoids	
 below

Magnitude:	
 1.9
Phase:	
 -­‐.94

Magnitude:	
 0.27
Phase:	
 -­‐1.4 Phase:	
 -­‐2.8

Writing functions as sums of sinusoids

Magnitude:	
 -­‐0.3
Phase:	
 0

• We can thus express the original function as a
series of magnitude and phase coefficients
– We treat the constant term as having phase 0
– If the original function is defined at N equally spaced

points, we’ll need a total of N coefficients
– If the original function is continuous, we’ll need an

infinite series of magnitude and shift coefficients—but
we can approximate the function with just the first few

10

Expressing a function as a set of
sinusoidal term coefficients

Magnitude:	
 0.39Magnitude:	
 1.9
Phase:	
 -­‐.94

Magnitude:	
 0.27
Phase:	
 -­‐1.4 Phase:	
 -­‐2.8

Magnitude:	
 -­‐0.3

Sinusoid	
 1	
 	

(period	
 L,	
 frequency	
 1/L)

Constant	
 term	
 	

(frequency	
 0)

Sinusoid	
 2	
 	

(period	
 L/2,	
 frequency	
 2/L)

Sinusoid	
 3	
 	

(period	
 L/3,	
 frequency	
 3/L)

Phase:	
 0

Using complex numbers to represent
magnitude plus phase

• We can express the magnitude and phase of
each sinusoidal component using a complex
number

11

Imaginary	
 part

Real	

part

Magnitude	
 =	

length	
 of	
 arrow

Phase	
 =	
  
angle	
 of	
 arrow

Using complex numbers to represent
magnitude plus phase

• We can express the magnitude and phase of
each sinusoidal component using a complex
number

• Thus we can express our original function as a
series of complex numbers representing the
sinusoidal components
– This turns out to be more convenient (mathematically

and computationally) than storing magnitudes and
phases

The Fourier transform

• The Fourier transform maps a function to a set of
complex numbers representing sinusoidal
coefficients
– We also say it maps the function from “real space” to

“Fourier space” (or “frequency space”)
– Note that in a computer, we can represent a function as

an array of numbers giving the values of that function at
equally spaced points.

• The inverse Fourier transform maps in the other
direction
– It turns out that the Fourier transform and inverse

Fourier transform are almost identical. A program that
computes one can easily be used to compute the other.

13

Demo

14

Why do we want to express our function
using sinusoids?

• Sinusoids crop up all over the place in nature
– For example, sound is usually described in terms of

different frequencies
• Sinusoids have the unique property that if you

sum two sinusoids of the same frequency (of any
phase or magnitude), you always get another
sinusoid of the same frequency
– This leads to some very convenient computational

properties that we’ll come to later

15

Fourier transforms

16

The Fast Fourier Transform (FFT)

The Fast Fourier Transform (FFT)

• The number of arithmetic operations required to
compute the Fourier transform of N numbers
(i.e., of a function defined at N points) in a
straightforward manner is proportional to N2

• Surprisingly, it is possible to reduce this N2 to
NlogN using a clever algorithm
– This algorithm is the Fast Fourier Transform (FFT)
– It is probably the most important algorithm of the past

century
– You do not need to know how it works—only that it

exists.
17

Fourier transforms

18

Multidimensional Fourier Transforms

Images as functions of two variables

• Many of the applications we’ll
consider involve images

• A grayscale image can be
thought of as a function of
two variables
– The position of each pixel

corresponds to some value of x
and y

– The brightness of that pixel is
proportional to f(x,y)

19

x

y

Two-dimensional Fourier transform
• We can express functions of two variables as sums of sinusoids
• Each sinusoid has a frequency in the x-direction and a frequency

in the y-direction
• We need to specify a magnitude and a phase for each sinusoid
• Thus the 2D Fourier transform maps the original function to a

complex-valued function of two frequencies

20

f x, y() = sin 2π ⋅0.02x + 2π ⋅0.01y()

Three-dimensional Fourier transform

• The 3D Fourier transform maps functions of three
variables (i.e., a function defined on a volume) to
a complex-valued function of three frequencies

• Multidimensional Fourier transforms can also be
computed efficiently using the FFT algorithm

21

Convolution

22

Convolution

23

Moving averages

Convolution generalizes the notion of a
moving average

• We’re given an array of numerical values
– We can think of this array as specifying values of a function at

regularly spaced intervals
• To compute a moving average, we replace each value in

the array with the average of several values that precede
and follow it (i.e., the values within a window)

• We might choose instead to calculate a weighted moving
average, were we again replace each value in the array
with the average of several surrounding values, but we
weight those values differently

• We can express this as a convolution of the original
function (i.e., array) with another function (array) that
specifies the weights on each value in the window 24

Example

25

f g

f	
 convolved	
 with	
 g	
 (written	
 f∗g)

Convolution

26

Mathematical definition

Convolution: mathematical definition

• If f and g are functions defined at evenly spaced
points, their convolution is given by:

27

f ∗g() n[]= f m[]
m=−∞

∞

∑ g n −m[]

Convolution

28

Multidimensional convolution

Two-dimensional convolution

• In two-dimensional convolution, we replace each
value in a two-dimensional array with a weighted
average of the values surrounding it in two
dimensions
– We can represent two-dimensional arrays as functions

of two variables, or as matrices, or as images

29

Two-dimensional convolution: example

30

f g

f∗g	
 (f	
 convolved	
 with	
 g)

Multidimensional convolution

• The concept generalizes to higher dimensions
• For example, in three-dimensional convolution,

we replace each value in a three-dimensional
array with a weighted average of the values
surrounding it in three dimensions

31

Convolution

32

Performing convolution using Fourier
transforms

Relationship between convolution and
Fourier transforms

• It turns out that convolving two functions is
equivalent to multiplying them in the frequency
domain
– One multiplies the complex numbers representing

coefficients at each frequency
• In other words, we can perform a convolution by

taking the Fourier transform of both functions,
multiplying the results, and then performing an
inverse Fourier transform

33

Why does this relationship matter?

• It allows us to perform convolution faster
– If two functions are each defined at N points, the

number of operations required to convolve them in the
straightforward manner is proportional to N2

– If we use Fourier transforms and take advantage of the
FFT algorithm, the number of operations is
proportional to NlogN

• It allows us to characterize convolution
operations in terms of changes to different
frequencies
– For example, convolution with a Gaussian will

preserve low-frequency components while reducing
high-frequency components 34

