Fourier transforms and convolution

(without the agonizing pain)

CS/CME/Biophys/BMI 279
Oct. 27 and 29, 2015
Ron Dror
Outline

• Why do we care?
• Fourier transforms
 – Writing functions as sums of sinusoids
 – The Fast Fourier Transform (FFT)
 – Multi-dimensional Fourier transforms
• Convolution
 – Moving averages
 – Mathematical definition
 – Performing convolution using Fourier transforms
Why do we care?
Why study Fourier transforms and convolution?

• In the remainder of the course, we’ll study several methods that depend on analysis of images or reconstruction of structure from images:
 – Light microscopy (particularly fluorescence microscopy)
 – Electron microscopy (particularly for single-particle reconstruction)
 – X-ray crystallography

• The computational aspects of each of these methods involve Fourier transforms and convolution

• These concepts are also important for:
 – Some approaches to ligand docking (and protein-protein docking)
 – Fast evaluation of electrostatic interactions in molecular dynamics
 – (You’re not responsible for these additional applications)
Fourier transforms
Fourier transforms

Writing functions as sums of sinusoids
Writing functions as sums of sinusoids

- Given a function defined on an interval of length L, we can write it as a sum of sinusoids whose periods are $L, L/2, L/3, L/4, \ldots$ (plus a constant term)
Writing functions as sums of sinusoids

- Given a function defined on an interval of length L, we can write it as a sum of sinusoids whose periods are $L, L/2, L/3, L/4, \ldots$ (plus a constant term)
Writing functions as sums of sinusoids

- Each of these sinusoidal terms has a magnitude (scale factor) and a phase (shift).

Original function

Sum of sinusoids below

- $f(x) = -0.3$
 - Magnitude: -0.3
 - Phase: 0

- $f(x) = 1.9 \cos(2\pi x + 0.94)$
 - Magnitude: 1.9
 - Phase: -0.94

- $f(x) = 0.27 \cos(2\pi x + 1.4)$
 - Magnitude: 0.27
 - Phase: -1.4

- $f(x) = 0.39 \cos(2\pi x + 2.8)$
 - Magnitude: 0.39
 - Phase: -2.8
Expressing a function as a set of sinusoidal term coefficients

• We can thus express the original function as a series of magnitude and phase coefficients
 – We treat the constant term as having phase 0
 – If the original function is defined at N equally spaced points, we’ll need a total of N coefficients
 – If the original function is continuous, we’ll need an infinite series of magnitude and shift coefficients—but we can approximate the function with just the first few

<table>
<thead>
<tr>
<th>Constant term</th>
<th>Sinusoid 1</th>
<th>Sinusoid 2</th>
<th>Sinusoid 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(frequency 0)</td>
<td>(period L, frequency $1/L$)</td>
<td>(period $L/2$, frequency $2/L$)</td>
<td>(period $L/3$, frequency $3/L$)</td>
</tr>
<tr>
<td>Magnitude: -0.3</td>
<td>Magnitude: 1.9</td>
<td>Magnitude: 0.27</td>
<td>Magnitude: 0.39</td>
</tr>
<tr>
<td>Phase: 0</td>
<td>Phase: -.94</td>
<td>Phase: -1.4</td>
<td>Phase: -2.8</td>
</tr>
</tbody>
</table>
Using complex numbers to represent magnitude plus phase

- We can express the magnitude and phase of each sinusoidal component using a complex number.

![Diagram of complex number representation](image)

- Imaginary part
- Real part
- Magnitude = length of arrow
- Phase = angle of arrow
Using complex numbers to represent magnitude plus phase

• We can express the magnitude and phase of each sinusoidal component using a complex number.

• Thus we can express our original function as a series of complex numbers representing the sinusoidal components.
 – This turns out to be more convenient (mathematically and computationally) than storing magnitudes and phases.
The Fourier transform

• The Fourier transform maps a function to a set of complex numbers representing sinusoidal coefficients
 – We also say it maps the function from “real space” to “Fourier space” (or “frequency space”)
 – Note that in a computer, we can represent a function as an array of numbers giving the values of that function at equally spaced points.

• The inverse Fourier transform maps in the other direction
 – It turns out that the Fourier transform and inverse Fourier transform are almost identical. A program that computes one can easily be used to compute the other.
Demo
Why do we want to express our function using *sinusoids*?

- Sinusoids crop up all over the place in nature
 - For example, sound is usually described in terms of different frequencies
- Sinusoids have the unique property that if you sum two sinusoids of the same frequency (of any phase or magnitude), you always get another sinusoid of the same frequency
 - This leads to some very convenient computational properties that we’ll come to later
Fourier transforms

The Fast Fourier Transform (FFT)
The Fast Fourier Transform (FFT)

- The number of arithmetic operations required to compute the Fourier transform of N numbers (i.e., of a function defined at N points) in a straightforward manner is proportional to N^2
- Surprisingly, it is possible to reduce this N^2 to $N\log N$ using a clever algorithm
 - This algorithm is the Fast Fourier Transform (FFT)
 - It is probably the most important algorithm of the past century
 - You do not need to know how it works—only that it exists.
Fourier transforms

Multidimensional Fourier Transforms
Images as functions of two variables

• Many of the applications we’ll consider involve images
• A grayscale image can be thought of as a function of two variables
 – The position of each pixel corresponds to some value of x and y
 – The brightness of that pixel is proportional to $f(x,y)$
Two-dimensional Fourier transform

- We can express functions of two variables as sums of sinusoids.
- Each sinusoid has a frequency in the x-direction and a frequency in the y-direction.
- We need to specify a magnitude and a phase for each sinusoid.
- Thus the 2D Fourier transform maps the original function to a complex-valued function of two frequencies.

$$f(x, y) = \sin(2\pi \cdot 0.02x + 2\pi \cdot 0.01y)$$
Three-dimensional Fourier transform

- The 3D Fourier transform maps functions of three variables (i.e., a function defined on a volume) to a complex-valued function of three frequencies.
- Multidimensional Fourier transforms can also be computed efficiently using the FFT algorithm.
Convolution
Convolution

Moving averages
Convolution generalizes the notion of a *moving average*

- We’re given an array of numerical values
 - We can think of this array as specifying values of a function at regularly spaced intervals
- To compute a moving average, we replace each value in the array with the average of several values that precede and follow it (i.e., the values within a *window*)
- We might choose instead to calculate a *weighted moving average*, were we again replace each value in the array with the average of several surrounding values, but we weight those values differently
- We can express this as a *convolution* of the original function (i.e., array) with another function (array) that specifies the weights on each value in the window
Example

f convolved with g (written $f \ast g$)
Convolution

Mathematical definition
Convolution: mathematical definition

• If f and g are functions defined at evenly spaced points, their convolution is given by:

$$(f * g)[n] = \sum_{m=-\infty}^{\infty} f[m]g[n-m]$$
Convolution

Multidimensional convolution
Two-dimensional convolution

• In two-dimensional convolution, we replace each value in a two-dimensional array with a weighted average of the values surrounding it in two dimensions
 – We can represent two-dimensional arrays as functions of two variables, or as matrices, or as images
Two-dimensional convolution: example

\[f \ast g \]
(f convolved with g)
Multidimensional convolution

- The concept generalizes to higher dimensions
- For example, in three-dimensional convolution, we replace each value in a three-dimensional array with a weighted average of the values surrounding it in three dimensions
Convolution

Performing convolution using Fourier transforms
Relationship between convolution and Fourier transforms

• It turns out that convolving two functions is equivalent to \textit{multiplying} them in the frequency domain

 – One multiplies the complex numbers representing coefficients at each frequency

• In other words, we can perform a convolution by taking the Fourier transform of both functions, multiplying the results, and then performing an inverse Fourier transform
Why does this relationship matter?

- It allows us to perform convolution faster
 - If two functions are each defined at N points, the number of operations required to convolve them in the straightforward manner is proportional to N^2
 - If we use Fourier transforms and take advantage of the FFT algorithm, the number of operations is proportional to $N \log N$

- It allows us to characterize convolution operations in terms of changes to different frequencies
 - For example, convolution with a Gaussian will preserve low-frequency components while reducing high-frequency components