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Why do we care?
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Why study Fourier transforms and 
convolution? 

• In the remainder of the course, we’ll study several methods 
that depend on analysis of images or reconstruction of 
structure from images: 
– Light microscopy (particularly fluorescence microscopy) 
– Electron microscopy (particularly for single-particle 

reconstruction) 
– X-ray crystallography 

• The computational aspects of each of these methods 
involve Fourier transforms and convolution 

• These concepts are also important for: 
– Some approaches to ligand docking (and protein-protein docking) 
– Fast evaluation of electrostatic interactions in molecular dynamics 
– (You’re not responsible for these additional applications) 4



Fourier transforms
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Fourier transforms
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Writing functions as sums of sinusoids



Writing functions as sums of sinusoids
• Given a function defined on an interval of length L, 

we can write it as a sum of sinusoids whose periods 
are L, L/2, L/3, L/4, … (plus a constant term)
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Writing functions as sums of sinusoids
• Given a function defined on an interval of length L, 

we can write it as a sum of sinusoids whose periods 
are L, L/2, L/3, L/4, … (plus a constant term)
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+ +
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+

• Each of these sinusoidal terms has a magnitude 
(scale factor) and a phase (shift).
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• We can thus express the original function as a 
series of magnitude and phase coefficients  
– We treat the constant term as having phase 0 
– If the original function is defined at N equally spaced 

points, we’ll need a total of N coefficients 
– If the original function is continuous, we’ll need an 

infinite series of magnitude and shift coefficients—but 
we can approximate the function with just the first few
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Using complex numbers to represent 
magnitude plus phase

• We can express the magnitude and phase of 
each sinusoidal component using a complex 
number
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Using complex numbers to represent 
magnitude plus phase

• We can express the magnitude and phase of 
each sinusoidal component using a complex 
number 

• Thus we can express our original function as a 
series of complex numbers representing the 
sinusoidal components 
– This turns out to be more convenient (mathematically 

and computationally) than storing magnitudes and 
phases



The Fourier transform

• The Fourier transform maps a function to a set of 
complex numbers representing sinusoidal 
coefficients 
– We also say it maps the function from “real space” to 

“Fourier space” (or “frequency space”) 
– Note that in a computer, we can represent a function as 

an array of numbers giving the values of that function at 
equally spaced points. 

• The inverse Fourier transform maps in the other 
direction 
– It turns out that the Fourier transform and inverse 

Fourier transform are almost identical.  A program that 
computes one can easily be used to compute the other.
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Demo

14



Why do we want to express our function 
using sinusoids?

• Sinusoids crop up all over the place in nature 
– For example, sound is usually described in terms of 

different frequencies 
• Sinusoids have the unique property that if you 

sum two sinusoids of the same frequency (of any 
phase or magnitude), you always get another 
sinusoid of the same frequency 
– This leads to some very convenient computational 

properties that we’ll come to later
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Fourier transforms
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The Fast Fourier Transform (FFT)



The Fast Fourier Transform (FFT)

• The number of arithmetic operations required to 
compute the Fourier transform of N numbers 
(i.e., of a function defined at N points) in a 
straightforward manner is proportional to N2 

• Surprisingly, it is possible to reduce this N2 to 
NlogN using a clever algorithm 
– This algorithm is the Fast Fourier Transform (FFT) 
– It is probably the most important algorithm of the past 

century 
– You do not need to know how it works—only that it 

exists.
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Fourier transforms
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Multidimensional Fourier Transforms



Images as functions of two variables

• Many of the applications we’ll 
consider involve images 

• A grayscale image can be 
thought of as a function of 
two variables 
– The position of each pixel 

corresponds to some value of x 
and y 

– The brightness of that pixel is 
proportional to f(x,y)
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Two-dimensional Fourier transform
• We can express functions of two variables as sums of sinusoids 
• Each sinusoid has a frequency in the x-direction and a frequency 

in the y-direction 
• We need to specify a magnitude and a phase for each sinusoid 
• Thus the 2D Fourier transform maps the original function to a 

complex-valued function of two frequencies
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f x, y( ) = sin 2π ⋅0.02x + 2π ⋅0.01y( )



Three-dimensional Fourier transform

• The 3D Fourier transform maps functions of three 
variables (i.e., a function defined on a volume) to 
a complex-valued function of three frequencies 

• Multidimensional Fourier transforms can also be 
computed efficiently using the FFT algorithm  
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Convolution
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Convolution
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Moving averages



Convolution generalizes the notion of a 
moving average

• We’re given an array of numerical values 
– We can think of this array as specifying values of a function at 

regularly spaced intervals 
• To compute a moving average, we replace each value in 

the array with the average of several values that precede 
and follow it (i.e., the values within a window) 

• We might choose instead to calculate a weighted moving 
average, were we again replace each value in the array 
with the average of several surrounding values, but we 
weight those values differently 

• We can express this as a convolution of the original 
function (i.e., array) with another function (array) that 
specifies the weights on each value in the window  24



Example
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Convolution
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Mathematical definition



Convolution: mathematical definition

• If f and g are functions defined at evenly spaced 
points, their convolution is given by: 
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f ∗g( ) n[ ]= f m[ ]
m=−∞

∞

∑ g n −m[ ]



Convolution
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Multidimensional convolution



Two-dimensional convolution

• In two-dimensional convolution, we replace each 
value in a two-dimensional array with a weighted 
average of the values surrounding it in two 
dimensions 
– We can represent two-dimensional arrays as functions 

of two variables, or as matrices, or as images
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Two-dimensional convolution: example
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Multidimensional convolution

• The concept generalizes to higher dimensions 
• For example, in three-dimensional convolution, 

we replace each value in a three-dimensional 
array with a weighted average of the values 
surrounding it in three dimensions
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Convolution
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Performing convolution using Fourier 
transforms



Relationship between convolution and 
Fourier transforms

• It turns out that convolving two functions is 
equivalent to multiplying them in the frequency 
domain 
– One multiplies the complex numbers representing 

coefficients at each frequency 
• In other words, we can perform a convolution by 

taking the Fourier transform of both functions, 
multiplying the results, and then performing an 
inverse Fourier transform
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Why does this relationship matter?

• It allows us to perform convolution faster 
– If two functions are each defined at N points, the 

number of operations required to convolve them in the 
straightforward manner is proportional to N2 

– If we use Fourier transforms and take advantage of the 
FFT algorithm, the number of operations is 
proportional to NlogN 

• It allows us to characterize convolution 
operations in terms of changes to different 
frequencies 
– For example, convolution with a Gaussian will 

preserve low-frequency components while reducing 
high-frequency components 34


