Fourier transforms and convolution (without the agonizing pain)

CS/CME/Biophys/BMI 279 Oct. 27 and 29, 2015 Ron Dror

Outline

- Why do we care?
- Fourier transforms
 - Writing functions as sums of sinusoids
 - The Fast Fourier Transform (FFT)
 - Multi-dimensional Fourier transforms
- Convolution
 - Moving averages
 - Mathematical definition
 - Performing convolution using Fourier transforms

Why do we care?

Why study Fourier transforms and convolution?

- In the remainder of the course, we'll study several methods that depend on analysis of images or reconstruction of structure from images:
 - Light microscopy (particularly fluorescence microscopy)
 - Electron microscopy (particularly for single-particle reconstruction)
 - X-ray crystallography
- The computational aspects of each of these methods involve Fourier transforms and convolution
- These concepts are also important for:
 - Some approaches to ligand docking (and protein-protein docking)
 - Fast evaluation of electrostatic interactions in molecular dynamics
 - (You're not responsible for these additional applications)

Fourier transforms

Fourier transforms

Writing functions as sums of sinusoids

Writing functions as sums of sinusoids

 Given a function defined on an interval of length L, we can write it as a sum of sinusoids whose periods are L, L/2, L/3, L/4, ... (plus a constant term)

Writing functions as sums of sinusoids

• Given a function defined on an interval of length *L*, we can write it as a sum of sinusoids whose periods are *L*, *L*/2, *L*/3, *L*/4, ... (plus a constant term)

sum of 49 sinusoids (plus constant term)

sum of 50 sinusoids (plus constant term)

8

Writing functions as sums of sinusoids

• Each of these sinusoidal terms has a magnitude (scale factor) and a phase (shift).

Expressing a function as a set of sinusoidal term coefficients

- We can thus express the original function as a series of magnitude and phase coefficients
 - We treat the constant term as having phase 0
 - If the original function is defined at N equally spaced points, we'll need a total of N coefficients
 - If the original function is continuous, we'll need an infinite series of magnitude and shift coefficients—but we can approximate the function with just the first few

Constant term	Sinusoid 1	Sinusoid 2	Sinusoid 3
<u>(frequency 0)</u>	(period L, frequency 1/L)	(period L/2, frequency 2/L)	(period L/3, frequency 3/L)
Magnitude: -0.3	Magnitude: 1.9	Magnitude: 0.27	Magnitude: 0.39
Phase: 0	Phase:94	Phase: -1.4	Phase: -2.8 10

Using complex numbers to represent magnitude plus phase

 We can express the magnitude and phase of each sinusoidal component using a complex number

Using complex numbers to represent magnitude plus phase

- We can express the magnitude and phase of each sinusoidal component using a complex number
- Thus we can express our original function as a series of complex numbers representing the sinusoidal components
 - This turns out to be more convenient (mathematically and computationally) than storing magnitudes and phases

The Fourier transform

- The Fourier transform maps a function to a set of complex numbers representing sinusoidal coefficients
 - We also say it maps the function from "real space" to "Fourier space" (or "frequency space")
 - Note that in a computer, we can represent a function as an array of numbers giving the values of that function at equally spaced points.
- The inverse Fourier transform maps in the other direction
 - It turns out that the Fourier transform and inverse
 Fourier transform are almost identical. A program that ¹³
 computes one can easily be used to compute the other.

Demo

Why do we want to express our function using *sinusoids*?

- Sinusoids crop up all over the place in nature
 - For example, sound is usually described in terms of different frequencies
- Sinusoids have the unique property that if you sum two sinusoids of the same frequency (of any phase or magnitude), you always get another sinusoid of the same frequency
 - This leads to some very convenient computational properties that we'll come to later

Fourier transforms

The Fast Fourier Transform (FFT)

The Fast Fourier Transform (FFT)

- The number of arithmetic operations required to compute the Fourier transform of N numbers (i.e., of a function defined at N points) in a straightforward manner is proportional to N²
- Surprisingly, it is possible to reduce this N² to NlogN using a clever algorithm
 - This algorithm is the Fast Fourier Transform (FFT)
 - It is probably the most important algorithm of the past century
 - You do not need to know how it works—only that it exists.

Fourier transforms

Multidimensional Fourier Transforms

Images as functions of two variables

- Many of the applications we'll consider involve images
- A grayscale image can be thought of as a function of two variables
 - The position of each pixel corresponds to some value of x and y
 - The brightness of that pixel is proportional to f(x,y)

Two-dimensional Fourier transform

- We can express functions of two variables as sums of sinusoids
- Each sinusoid has a frequency in the x-direction and a frequency in the y-direction
- We need to specify a magnitude and a phase for each sinusoid
- Thus the 2D Fourier transform maps the original function to a complex-valued function of two frequencies

 $f(x,y) = \sin(2\pi \cdot 0.02x + 2\pi \cdot 0.01y)$

Three-dimensional Fourier transform

- The 3D Fourier transform maps functions of three variables (i.e., a function defined on a volume) to a complex-valued function of three frequencies
- Multidimensional Fourier transforms can also be computed efficiently using the FFT algorithm

Convolution

Convolution

Moving averages

Convolution generalizes the notion of a *moving average*

- We're given an array of numerical values
 - We can think of this array as specifying values of a function at regularly spaced intervals
- To compute a moving average, we replace each value in the array with the average of several values that precede and follow it (i.e., the values within a *window*)
- We might choose instead to calculate a weighted moving average, were we again replace each value in the array with the average of several surrounding values, but we weight those values differently
- We can express this as a *convolution* of the original function (i.e., array) with another function (array) that specifies the weights on each value in the window

Example

f convolved with g (written f*g)

25

Convolution

Mathematical definition

Convolution: mathematical definition

• If *f* and *g* are functions defined at evenly spaced points, their convolution is given by:

$$(f * g)[n] = \sum_{m=-\infty}^{\infty} f[m]g[n-m]$$

Convolution

Multidimensional convolution

Two-dimensional convolution

- In two-dimensional convolution, we replace each value in a two-dimensional array with a weighted average of the values surrounding it in two dimensions
 - We can represent two-dimensional arrays as functions of two variables, or as matrices, or as images

Two-dimensional convolution: example

30

Multidimensional convolution

- The concept generalizes to higher dimensions
- For example, in three-dimensional convolution, we replace each value in a three-dimensional array with a weighted average of the values surrounding it in three dimensions

Convolution

Performing convolution using Fourier transforms

Relationship between convolution and Fourier transforms

- It turns out that convolving two functions is equivalent to *multiplying* them in the frequency domain
 - One multiplies the complex numbers representing coefficients at each frequency
- In other words, we can perform a convolution by taking the Fourier transform of both functions, multiplying the results, and then performing an inverse Fourier transform

Why does this relationship matter?

- It allows us to perform convolution faster
 - If two functions are each defined at N points, the number of operations required to convolve them in the straightforward manner is proportional to N²
 - If we use Fourier transforms and take advantage of the FFT algorithm, the number of operations is proportional to *N*log*N*
- It allows us to characterize convolution operations in terms of changes to different frequencies
 - For example, convolution with a Gaussian will preserve low-frequency components while reducing high-frequency components