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How do molecules move around In a
cell?



From Inner Life of the Cell | Protein Packing, XVIVO and Biovisions @ Harvard

e The interior of the cell is crowded, and all the molecules jiggle about.
* Note that lots of molecules (e.g., water) aren’t even shown in this movie. ,




Molecules jiggle about because other
molecules keep bumping into them

https://www.youtube.com/watch?v=1jYabtziQZo



Diffusion

This “jiggling about” by lots of molecules leads to
diffusion

Individual molecules follow a random walk, due
to collisions with surrounding molecules

Diffusion = many random walks by many
molecules

— Substance goes from region of high concentration to
region of lower concentration

Molecules can move around in complicated ways
within cells. We will focus on the basic case of
random, unconfined, undirected motion.



Diffusion as a random walk
(particle-based perspective)



Random walk

« \WWe can model the motion of a molecule as a random walk

— At each time step, randomly pick a direction, and move one unit
In that direction

— This type of motion (when caused by random collisions with
other molecules) is called “Brownian motion”
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In the movie, only cardinal directions are chosen, but we could pick
diagonal directions as well and still get Brownian motion



1, 2, or 3 dimensions

* |n biological systems, a random walk can take
place in:

— 3 dimensions: a protein moving freely within the
interior of a cell

— 2 dimensions: a protein moving within a cell
membrane

— 1 dimension: a protein (e.g., transcription factor)
moving along a strand of DNA



Consider the 1D case (for simplicity)

A particle starts at xo =0

At each time step, it has 50% probability of
moving one unit forward, and 50% probability of
moving one unit backward

Denote the sequence of positions as xo, x1, X2, X3,

Question: if you repeat this process many times
and make a histogram of the position x3, what will
it look like? How about X1007
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Properties of 1D Brownian motion

« After 3 steps:

— Probabilities:
 P(x3=-3)=1/8
* P(x3=-1)=3/8
 P(x3=1)=23/8
 P(x3=3)=1/8
— Mean displacement: E[x3] = 0
— Mean-squared displacement: E[x32] =3
 After N steps:
— Mean displacement: E[xy] = 0
— Mean-squared displacement: E[xy°] = N
— MclilrLedenerally, if the particle moves a distance L at each time step, E[xNz]
— As N grows large, the distribution approaches a Gaussian (with mean 0O
and variance NL?) "



Diffusion as a function of time

 |nstead of thinking of position as a function of N,
we might think of it as a function of time.

— Let t denote total time and Af denote time step. Then:

N= L
Ar

2 2 2 4 2
E|x(t) |=E|x,” |=NL =L

— In other words, expected mean squared displacement
grows linearly with time
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Diffusion constant

To quantify speed of diffusion, we define the
diffusion constant D: 1?2

D =
2At

Then E|x(t)’ |=2Dt
In 2D, the diffusion constant is defined such that

E|x(t)’ |=4Dt

In 3D, E|x(t)’ |=6Dt

Lager molecules generally diffuse more slowly
than small ones
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An example

 Diffusion constants (D):
— Sugar: 500 (um)?/s
— Typical protein: 5 (um)?4/s
» Cell size (radius r):
— Bacterium (E. coli): 1 um
— Neutrophil: 10 ym
— Nerve cell: 1000 pm

 How long does it take for sugar, introduced in

one place in the cell, to spread everywhere?
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Continuum view of diffusion
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Basic intuition

* Although we can't predict the motion of one
particle, we can predict the average motion of a
large number of particles

— Particles will move from regions of high concentration
to regions of low concentration

ooooo
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Fick's law (or Fick’s 1st law)

Suppose that particles are uniformly distributed in the y and z
dimensions, and vary only in x

Let ¢ represent concentration (a function of x)

Define the flux J as the rate at which particles diffuse across a
boundary

Then Fick’s 1st law states that:
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How does concentration change with
time?

* Now think of concentration and flux as a function of position x and time t

« The concentration at a particular position goes down with time if there is
more flux away from that position then there is coming in to that position
(in other words, if the flux at that position is increasing as one moves in

the positive x direction)
dc  dJ
ot ox
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Diffusion Equation (or Fick’s 2nd law)

« Combining these formulae gives us:

2
de_ _9J _i(_DE): pdc
0x ox’
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Example

« 1D diffusion from a point:

— Solution to the diffusion equation is a Gaussian whose
variance grows linearly with time
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In three dimensions ...

* Now suppose concentration varies as a function
of x,y,z,and t

* The diffusion equation generalizes to:

@
ot
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2 . :
V< is called the Laplacian operator
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Simulating diffusion



Reaction-diffusion simulation

A common way to model how molecules move
within the cell involves reaction-diffusion
simulation

« Basic rules:

— Molecules move around by diffusion

— When two molecules come close together, they have
some probability of reacting to combine or modify one
another

* Two implementation strategies:
— Particle-based
— Continuum models
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MCell: one of several particle-based
simulation software packages

C' [ www.mcell.org/indexhtm

HOMEPAGE PEOPLE RESEARCH TUTORIALS DOCUMENTATION PUBLICATIONS DOWNLOADS OUTREACH FORUMS

MCel

MONTE CARLO CELL

Other similar software packages: Smoldyn, Chemcell



How MCell works

* Particles representing molecules move according
to a random walk, and react with one another
probabilistically when they come into contact

— MCell uses Monte Carlo algorithms

* Morphology of cellular membranes (and other
cellular structures) represented by a mesh

& ev & o

http://www.mcell.cnl.salk.edu/
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MCell applications

« MCell has been widely used in neuroscience, to
model phenomena such as synaptic transmission

* A common approach is to perform simulations
under various assumptions and see which ones
best match experimental data

— See, for example, Coggan et al., Evidence for Ectopic
Neurotransmission at a Neuronal Synapse, Science
309:446-451 (2005)
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Continuum approach

* Divide space into finite “voxels”

 |nstead of tracking positions of molecules, track
concentrations of each type of molecule in each
voxel

* At each time step, update concentrations based
on reactions of molecules within a voxel, and
diffusion between neighboring voxels based on
concentration differences (i.e., the diffusion
equation)
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Continuum approach

Advantage: faster

Disadvantage: less accurate for small numbers of
molecules

Unlike the particle-based approach, the
continuum approach is deterministic

Example software: Simmune
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Example: Gray-Scott model

Chemical A is added Chemical B is removed
at a given "feed" rate. at a given "kill" rate.
* Reaction: two Bs convert an A into B, *
as if B reproduces using A as food.

-~ ~
® — @

The system is approximated by using
two numbers at each grid cell for the
local concentrations of A and B.

Diffusion: both chemicals diffuse so uneven concentrations
spread out across the grid, but A diffuses faster than B.

_ _ http://www.karlsims.com/rd.htmi
You’re not responsible for these details



Gray-Scott model

The grid is repeatedly updated using the following equations to update the concentrations
of A and B in each cell, and model the behaviors described above.

I

Diffusion: rates for Aand B ,

A'=A+(D,V’A-AB*+f(1-A)
New _ - " 2 p)
values | B'= (DBV' B+AB ~(k+f)B
_— |
Previous | __— lt
values {

_— Feed: at rate f, scaled by

- (1-A) so Adoesn't exceed 1.0

“Delta t” is the change in time
for each iteration. All the
terms get scaled by this.

Kill: this term is subtracted to remove B
and scaled by B so it doesn't go below 0.
fis added to k here so the resulting Kill
rate is never less than the feed rate.

These are 2D Laplacian functions, which give the
difference between the average of nearby grid
cells and this cell. This simulates diffusion because

A and B become more like their neighbors.

Reaction: the chance that one A and two B will come
togetheris A x B x B. Ais converted to B so this
amount is subtracted from A and added to B.

You’re not responsible for these details

http://www.karlsims.com/rd.html




Gray-Scott model

@

All sorts of interesting patterns emerge as one varies the parameters

http://www.karlsims.com/rd.html



Gray-Scott model

= Demo:
http://pmneila.github.io/jsexp/grayscott/



Alan Turing on morphogenesis

« Alan Turing proposed this as a model for pattern
formation in animals

— A. M. Turing, Philosophical Transactions of the Royal
Society of London, Series B, Vol. 237:37-72, 1952

THE CHEMICAL BASIS OF MORPHOGENESIS

By A. M. TURING, F.R.S. University of Manchester

(Recetved 9 November 1951—Revised 15 March 1952)

It is suggested that a system of chemical substances, called morphogens, reacting together and
diffusing through a tissue, is adequate to account for the main phenomena of morphogenesis.
Such a system, although it may originally be quite homogeneous, may later develop a pattern
or structure due to an instability of the homogeneous equilibrium, which is triggered off by
random disturbances. Such reaction-diffusion systems are considered in some detail in the case
of an isolated ring of cells, a mathematically convenient, though biologically unusual system.
33
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