Meta-compilation

Michael Donohue
Coverity

What is metacompilation?

e | didn’t know either

Metacompilation is a computation
which involves metasystem transitions
(MST) from a computing machine M to
a metamachine M' which controls,
analyzes and imitates the work of M.
Semantics-based program
transformation, such as partial
evaluation and supercompilation
(SCP), Is metacomputation.

-Wikipedia

What is compilation?

void GetBirth(int x) { char
query[100]; snprintf(query,
sizeof(query), "select * from
person where id = %i ", X);
GetMysql(query); eprint(0,
" %s's Birth date is:
%s\n ", row[1], row[2]); }

>

leal 4(%esp), %ecx
andl $-16, %esp
pushl -4(%ecx)
pushl %ebp

movl %esp, %ebp
pushl %ecx

subl $16, %esp
movl $0, -12(%ebp)
jmp L2

What is compilation?

« To some, It Is the backend optimizer —
Intermediate representations,
optimizations, instruction selection,
register allocation

e To others, It Is all the techniques used for
parsing
e For Coverity, compilation is parsing and

abstract syntax trees, with some help from
the backend analysis

Compilation at Coverity

 For C/C++, compilation takes source code
and builds abstract syntax trees

 The abstract syntax trees are directly used
for analysis, In contrast with the traditional
compilation step of using an intermediate
representation

e Coverity has different goals than a
compiler - we want to explain to a human
how a bug can occur

Compilation at Coverity

e For Java, complilation starts at the
bytecode generated by the java compiler

e Parsing consists of reading bytecode, and
verifying all appropriate debugging
Information Is included

 \Why do we need debugging information?

What is metacompilation?

e Using compiler algorithms
Do something beside generate code
 Find many defects

Interpretation

Parsing allows us to understand the structure of
the code

Compiler techniques allow us to understand the
relationship between statements in the code

Interpretation means we walk down every path
of the code

Our technique is called “Abstract Interpretation”
because we leave some values abstract

Finding a bug

public static void foo(Object a) {
if(a == null) {
System.out.printin(*a is null”);

}
System.out.println(a.toString());

}

The analysis sees

public static void foo(Object a) {
if(a == null) {
System.out.printin(“a is null”); ‘

}
System.out.println(a.toString());

aload O
ifnonnull 12
getstatic #5;
ldc #6;

iInvokevirtual #7;

. getstatic #5;
. aload O

iInvokevirtual #8;
iInvokevirtual #7;

. return

Execution of the bytecode

(o) OO;

o

00 0 00

O 1:

0 4:
O7:

09:

o 12:
O 15:
© 16:
19:
22

aload O
ifnonnull 12
getstatic #5; //Field System.out

ldc #6; //“String a is null”

invokevirtual #7; //Method java/io/PrintStream.printin
getstatic #5; //Field System.out

aload O

invokevirtual #8; //Method java/lang/Object.toString
invokevirtual #7; //Method java/io/PrintStream.printin
return

Abstractions

* The previous example shows a bug in the
null vs not-null abstraction

 The only values we tracked In the
execution were “null” “not-null” or “don’t
know”

* No explicit pointer values were calculated

Abstractions

 But the example Is contrived

e Using only those three values, we get a
false-positive here:

public static void foo(Object a, int b) {
if(a==null && b ==7) {
a = new Object();
}
if(lb ==7){
System.out.printin(a.toString());
}
}

Abstractions

* A null-pointer abstraction finds bugs, but it
can’t tell whether 7 == 7.

e An Integer abstraction can figure out the
sevens, but it doesn’t find null pointer bugs

e Solution: Run them together — the integer
abstraction can tell you about impossible
combinations, while the null-pointer
abstraction tells you about bugs

Abstractions

« Without path pruning, this method has 6
paths

 Integer pruning eliminates two of those —
and thus eliminates the false positive

public static void foo(Object a, int b) {
if(a==null && b ==7) {
a = new Object();
}
if(lb ==7){
System.out.printin(a.toString());
}
}

Abstractions

 If the abstraction eliminates impossible
combinations we call it a “False Path
Pruner”

e |f the abstraction finds defects, we call it a
“Checker”

e Abstractions don’'t communicate with one
another

False Path Pruners

e |nteger constants
 Type checks
e Null and nonnull values

Limits of abstraction

 Examples so far have been sound
e Tracking values in the heap is difficult
 We allow false negatives

public class Tree {
Tree left;
Tree right;
public int count() {
return left.count() + right.count();

}

public static test() { new Tree().count(); }

Going deeper

Finding local bugs Is nice

Not likely to get people excited about the
technology

Lets go interprocedural
Where do we start?

Going deeper

We already have a good local analysis
We know how to do compiler optimizations

Two compiler based phases stand out —
code generation and method inlining

First we generate code
Then we Inline It

Transform the code

public void foo(Object a, Object b) {

if(a == null) { _ _ _ _
public void foo(Object a, Object b)
System.out.printin(*a is null”); {
! if(a == null) {
System.out.printin(*a is null”);
printit(a);)

) // this came from printlt()
a.toString();
}

Public void printlt(Object obj) {
System.out.printin(obj.toString());

Getting the code

It turns out that commercial software
shops don’t know where their code Is

This is a huge problem for C and C++

Headers must be found, classnames have
no relationship to the filenames

Java solved all of this — filenames must
rigidly match their package name, and
there are no includes

Getting the code

But, commercial software shops don’t even
know where their Java code Is

An open-source corollary is the Eclipse project —
there are hundreds of plugins and each plugin
has a separate code base

However, everyone knows how to build their
software — they have to, otherwise they couldn'’t
release it

The solution is to mine the data we need out of
the build process

Failing to get the code

e For C, nearly everyone uses make

e |dea: run ‘make’ in verbose mode, save all
the commands in our own file, and then
rerun them later

 The ‘rerun’ them part turns out to be highly
context sensitive. Running ‘deltree /y .’
without an appropriate ‘cd output_dir’
preceding It has very unexpected results

cov-build

Our solution Is to invisibly wrap around the
build process for a piece of software

Intercept all calls to the compliler and
understand the command line options

Save a copy of all input files to the
compiler

Analyze later

Customer site visits

“Eclipse already does this”

“Stop denigrating lint!”

Commercial software really is different
than open-source

C programmers make poor use of Java
tools

Demo

Checkers

* Null-pointer issues
e Resource leaks
e |ncorrect use of a database connection

An example

if(a) {

a->init();
} if a->start();

FunctionBody

Sinit0)
a->start(); : a->Inity

