
Meta-compilation

Michael Donohue
Coverity

What is metacompilation?

• I didn’t know either

•Metacompilation is a computation
which involves metasystem transitions
(MST) from a computing machine M to
a metamachine M' which controls,
analyzes and imitates the work of M.
Semantics-based program
transformation, such as partial
evaluation and supercompilation
(SCP), is metacomputation.

-Wikipedia

What is compilation?

void GetBirth(int x) { char
query[100]; snprintf(query,
sizeof(query), "select * from
person where id = %i ", x);
GetMysql(query); eprint(0,
" %s's Birth date is:
%s\n ", row[1], row[2]); }

leal 4(%esp), %ecx
andl $-16, %esp
pushl -4(%ecx)
pushl %ebp
movl %esp, %ebp
pushl %ecx
subl $16, %esp
movl $0, -12(%ebp)
jmp .L2

What is compilation?

• To some, it is the backend optimizer –
intermediate representations,
optimizations, instruction selection,
register allocation

• To others, it is all the techniques used for
parsing

• For Coverity, compilation is parsing and
abstract syntax trees, with some help from
the backend analysis

Compilation at Coverity

• For C/C++, compilation takes source code
and builds abstract syntax trees

• The abstract syntax trees are directly used
for analysis, in contrast with the traditional
compilation step of using an intermediate
representation

• Coverity has different goals than a
compiler - we want to explain to a human
how a bug can occur

Compilation at Coverity

• For Java, compilation starts at the
bytecode generated by the java compiler

• Parsing consists of reading bytecode, and
verifying all appropriate debugging
information is included

• Why do we need debugging information?

What is metacompilation?

• Using compiler algorithms
• Do something beside generate code
• Find many defects

Interpretation

• Parsing allows us to understand the structure of
the code

• Compiler techniques allow us to understand the
relationship between statements in the code

• Interpretation means we walk down every path
of the code

• Our technique is called “Abstract Interpretation”
because we leave some values abstract

Finding a bug

public static void foo(Object a) {

if(a == null) {

System.out.println(“a is null”);

}

System.out.println(a.toString());

}

The analysis sees

public static void foo(Object a) {

if(a == null) {

System.out.println(“a is null”);

}

System.out.println(a.toString());

}

0: aload_0
1: ifnonnull 12
4: getstatic #5;
7: ldc #6;
9: invokevirtual #7;
12: getstatic #5;
15: aload_0
16: invokevirtual #8;
19: invokevirtual #7;
22: return

Execution of the bytecode

0: aload_0
1: ifnonnull 12
4: getstatic #5; //Field System.out
7: ldc #6; //“String a is null”
9: invokevirtual #7; //Method java/io/PrintStream.println
12: getstatic #5; //Field System.out
15: aload_0
16: invokevirtual #8; //Method java/lang/Object.toString
19: invokevirtual #7; //Method java/io/PrintStream.println
22: return

Abstractions

• The previous example shows a bug in the
null vs not-null abstraction

• The only values we tracked in the
execution were “null” “not-null” or “don’t
know”

• No explicit pointer values were calculated

Abstractions

• But the example is contrived
• Using only those three values, we get a

false-positive here:

public static void foo(Object a, int b) {
if(a == null && b == 7) {

a = new Object();
}
if(b == 7) {

System.out.println(a.toString());
}

}

Abstractions

• A null-pointer abstraction finds bugs, but it
can’t tell whether 7 == 7.

• An integer abstraction can figure out the
sevens, but it doesn’t find null pointer bugs

• Solution: Run them together – the integer
abstraction can tell you about impossible
combinations, while the null-pointer
abstraction tells you about bugs

Abstractions

• Without path pruning, this method has 6
paths

• Integer pruning eliminates two of those –
and thus eliminates the false positive

public static void foo(Object a, int b) {
if(a == null && b == 7) {

a = new Object();
}
if(b == 7) {

System.out.println(a.toString());
}

}

Abstractions

• If the abstraction eliminates impossible
combinations we call it a “False Path
Pruner”

• If the abstraction finds defects, we call it a
“Checker”

• Abstractions don’t communicate with one
another

False Path Pruners

• Integer constants
• Type checks
• Null and nonnull values

Limits of abstraction

• Examples so far have been sound
• Tracking values in the heap is difficult
• We allow false negatives

public class Tree {

Tree left;

Tree right;

public int count() {

return left.count() + right.count();

}

public static test() { new Tree().count(); }

}

Going deeper

• Finding local bugs is nice
• Not likely to get people excited about the

technology
• Lets go interprocedural
• Where do we start?

Going deeper

• We already have a good local analysis
• We know how to do compiler optimizations
• Two compiler based phases stand out –

code generation and method inlining
• First we generate code
• Then we inline it

Transform the code

public void foo(Object a, Object b) {

if(a == null) {

System.out.println(“a is null”);

}

printIt(a);

}

Public void printIt(Object obj) {

System.out.println(obj.toString());

}

public void foo(Object a, Object b)
{

if(a == null) {
System.out.println(“a is null”);

}
// this came from printIt()
a.toString();

}

Getting the code

• It turns out that commercial software
shops don’t know where their code is

• This is a huge problem for C and C++
• Headers must be found, classnames have

no relationship to the filenames
• Java solved all of this – filenames must

rigidly match their package name, and
there are no includes

Getting the code

• But, commercial software shops don’t even
know where their Java code is

• An open-source corollary is the Eclipse project –
there are hundreds of plugins and each plugin
has a separate code base

• However, everyone knows how to build their
software – they have to, otherwise they couldn’t
release it

• The solution is to mine the data we need out of
the build process

Failing to get the code

• For C, nearly everyone uses make
• Idea: run ‘make’ in verbose mode, save all

the commands in our own file, and then
rerun them later

• The ‘rerun’ them part turns out to be highly
context sensitive. Running ‘deltree /y .’
without an appropriate ‘cd output_dir’
preceding it has very unexpected results

cov-build

• Our solution is to invisibly wrap around the
build process for a piece of software

• Intercept all calls to the compiler and
understand the command line options

• Save a copy of all input files to the
compiler

• Analyze later

Customer site visits

• “Eclipse already does this”
• “Stop denigrating lint!”
• Commercial software really is different

than open-source
• C programmers make poor use of Java

tools

Demo

Checkers

• Null-pointer issues
• Resource leaks
• Incorrect use of a database connection

An example

if(a) {

a->init();

}

a->start();

if

a a->init();

a->start();

FunctionBody

