
Empirical Computational Complexity

ABSTRACT
Computational complexity is the standard language for talking
about the asymptotic behavior of algorithms. We propose a sim-
ilar notion, which we call empirical computational complexity, for
describing the scalability of a program in practice. Constructing a
model of empirical computational complexity involves running a
program on workloads whose sizes span several orders of magni-
tude, measuring their performance, and constructing a model that
predicts the program’s performance as a function of input size.

We describe our tool, the Trend Profiler (trend-prof), for
constructing models of empirical computational complexity that
predict how many times each basic block in a program runs as a
function of input size. We show for several real-world programs
(such as gcc and gzip) that the number of times that scalability-
critical basic blocks execute is often well modeled by either a line
(y = a + bx) or a power law (y = axb). We ran trend-prof on
several real-world programs and found interesting facts about their
scaling behavior including two developer-confirmed performance
bugs. By using trend-prof, a programmer can find perfor-
mance bugs before they happen.

1. INTRODUCTION
Computer scientists talk about the scalability of algorithms in

terms of computational complexity: Quicksort is O(n logn) in the
size of the array; depth-first search is O(e) in the number of edges
in the graph. A similar idea is useful for describing program behav-
ior in practice. In particular, we propose measuring multiple runs
of a program and constructing empirical models that predict the
performance of the program as a function of the size of its inputs.

Consider the following code.

node * last node(node *n) {
if (!n) return NULL;
while (n->next) n = n->next;
return n;

}

From a performance perspective, this code looks fishy; it is com-
puting the last element in a list in time linear in the list’s length.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

The Trend Profile technique:

• Many inputs spanning magnitudes: Profile across inputs
whose sizes span several orders of magnitude.

• Separate source-line observations: count the number of
executions of each basic block separately.

• Two dimensional model: fit these counts versus some rea-
sonable measure of input size.

• Linear and power law fits: fit to a line in linear-linear and
log-log space, which tend to find linear and power law
models respectively.

Adding a pointer directly to the last element in the list would ad-
mit an obvious constant time implementation of this function. Of
course, if the list’s size is a small constant, then the performance
impact of this code is likely to be negligible, and adding the pointer
might not be worth the cost in code complexity and memory foot-
print. On the other hand, if these lists tend to be long, and especially
if their sizes increase with the size of the input to the program as a
whole, then this code constitutes a performance bug.

The crucial piece of information is how this code is used in the
context of the rest of the program. This code is from a C parser used
in a program analysis system [11]. In practice the sizes of the lists
increase as the square root of input size. On small- to medium-size
inputs, this line is not particularly high on the list of what a typical
profiler reports, but on large inputs the problem suddenly becomes
apparent.

We describe a technique for constructing models of the empirical
computational complexity of a program (Section 2). These models
predict the asymptotic behavior of programs based on observation
of multiple runs of the program. We describe our tool, Trend Pro-
filer (trend-prof), that measures the number of times each ba-
sic block in a program is executed and automatically builds linear
(ŷ = a+bx) and power law (ŷ = axb) models that predict how many
times a basic block will be executed as a function of user-specified
input size (Section 3).

With trend-prof we found the scalability problem described
above and several other interesting characteristics of several large
C and C++ programs, including gcc and gzip (Section 4). Run-
ning trend-prof reveals trends not only in the performance of
programs we measured but also in the characteristics of the work-
loads on which we ran the programs. By extrapolating these trends,
trend-prof can predict how many times each piece of the pro-
gram will execute on inputs larger than any of those that it mea-
sured. In particular it can identify pieces of code that scale worse

Facts about the trend-prof technique:

• It is easy to apply to programs without detailed knowledge
of their internals.

• Our models do not fit every line of code well, but those
lines that execute frequently often fit well.

• Simply ranking the models in decreasing order by 1) ex-
ponent or 2) their prediction for a fixed large input size
almost always points to interesting lines of code or shows
that the whole program is linear.

• It reveals facts about 1) the program and 2) the data, as
seen through the program.

• It can reveal a more accurate model of the actual behavior
than a worst-case theoretical analysis.

than the program as a whole; such code constitutes a performance
bug waiting to happen. We find that on the programs we mea-
sured, linear and powerlaw models generally fit the most-executed
basic blocks of the programs well (Section 5). We propose that
trend-prof or a similar technique be used to make quantitative
statements about the performance and scalability of complex pro-
grams.

2. EMPIRICAL COMPUTATIONAL COM-
PLEXITY

A model of empirical computational complexity for a piece of
code relates a workload’s size to the code’s performance on that
workload. We use the term “size” rather loosely to refer to any
measure of how hard the workload is. Thus, we expect “bigger”
workloads to consume more units of performance. These models
are quantitative; they predict a performance-relevant quantity as a
function of a workload’s size. For example, a model of a piece
of code to compute the transitive closure of a graph might predict
the number of machine instructions executed as a function of the
number of nodes in the input graph. We propose empirical compu-
tational complexity as a measure of a piece of code’s scalability.

In general, constructing a model of empirical computational
complexity consists of the following steps.

• Choose workloads {w1, . . . ,wk} on which to run the pro-
gram.

• Choose a measure of workload size and assign a size to each
workload {x1, . . . ,xk}. For a measure of workload size we
might choose size in bytes of an input file or the number
of nodes in a graph. We discuss measures of workload size
further in Section 3.4.

• Choose a measure of program performance; run the program
on each workload and record performance {y1, . . . ,yk} for
each line of code in the program. For a measure of program
performance we might measure time in milliseconds or num-
ber of bytes read from disk. We discuss measures of perfor-
mance further in Section 3.2.

• Fit each of these sets of observations to a model, ŷ = f (x);
these models predict the performance of each line of code as
a function of workload size. For instance, one might con-
clude that a selection sort does 1

2 (x2 − x) comparisons for an

input size of x. We discuss construction of these models in
Section 3.3.

3. Trend Profiler
In order to construct models of empirical computational com-

plexity, we built Trend Profiler (trend-prof). Given a program
and a set of workloads for it, trend-prof constructs a perfor-
mance model for each basic block in the program. These models
predict how many times the basic block will be executed as a func-
tion of the (user-supplied) input size.

3.1 An Example
Before exploring the choices we make in designing

trend-prof, we illustrate the use of trend-prof with
a toy example: selection sort. This example is purely for pedagog-
ical purposes; trend-prof gives useful results in significantly
more complex situations (see Section 4).

Our discussion uses the following implementation of selection
sort.

// pre: The memory at arr[0..size-1] is
// an array of ints.
// post: The ints in arr[0..size-1] are
// sorted in place from least to greatest.
void selection sort(int size, int *arr) {

for(int i=0; i<size; ++i)
for(int j=i+1; j<size; ++j)

if (arr[i] > arr[j]) //compare
swap(&arr[i], &arr[j]);

}

The size of a workload is the the number of integers in the input
array, arr. As workloads, we generated three arrays of random
integers with each of the following sizes (8, 32, 64, 256, 1024,
2048, 4096) for a total of 21 workloads. Notice that the workload
sizes span several orders of magnitude.

The measure of performance for trend-prof is the number
of times each basic block is executed on each workload. Thus,
trend-prof runs the selection sort program on each workload
and measures the number of times each basic block is executed. For
each basic block, trend-prof fits the observations to a power
law model that predicts number of times the basic block will be
executed as a function of number of ints in the array.

A little thought reveals that the comparison in the code above
runs exactly 1

2 n(n− 1) times when size = n. Figure 1 shows the
scatter plot of observations and the power law fit for the compar-
ison line in the selection sort code. The best power law fit to the
observations predicts 0.45 n2.02 comparisons for an input array of
size n. On the plot in Figure 1, this model is visually indistin-
guishable from the true answer of 0.5 n2 − 0.5 n, but it does not
match it perfectly because the lower order term adds some noise at
smaller input sizes. If we instead run trend-prof with work-
loads of sizes (256, 1024, 2048, 4096, 8000, 16000, 32000, 64000,
128000), trend-prof’s model predicts 1

2 n2 compares.

3.2 Measurement
Our focus in designing trend-prof is modeling scalability

rather than exact running time. This view led to our choice of basic
block counts as a measure of performance and of power law models
to describe each basic block. If an algorithm scales quadratically
with input size, it will execute some block a quadratic number of
times.

The amount of time (or number of clock cycles) each basic block
takes is another measure of performance, but we chose basic block
counts because of the following advantages:

10

100

1000

10000

100000

1e+06

1e+07

1 10 100 1000 10000

observations
best powerlaw fit

1
2 x(x−1)

Figure 1: Number of times the comparison in the selection sort
code executes as a function of input size. Shows observations
and the best powerlaw fit (ŷ = 0.45 n2.02, R2 = 1.00, MRE =
0.4%) on a log-log scale.

• ACCURACY: Our measurements are accurate; we count ex-
actly how many times each basic block executes. Issues of
insufficient timer resolution do not apply to counting basic
blocks.

• REPEATABILITY: Our measurements are as repeatable as the
program’s control flow is deterministic. If the control flow of
a program is deterministic, we measure the same basic block
execution counts on all runs of the program on a particular
workload. Our measurements do not depend the operating
system or architecture if the program’s control flow does not.

• LACK OF BIAS: Our measurements are unbiased. Unlike
measuring time, counting basic blocks does not affect the
count of any basic block. We do not sample, so there is no
possibility of sampling bias.

• PORTABILITY: Our solution is portable; we rely only on
gcc’s coverage mechanism and not on platform-specific per-
formance registers.

3.3 Model Construction
Running the client program and measuring basic block counts

yields a set of (input size, count) pairs for each basic block
{(xi,yi)}

k
i=1. For each basic block, trend-prof constructs a

performance model that predicts how many times that block will
be executed, ŷ, as a function of the (user-specified) workload size,
x.

There is no single right answer to what model fits
trend-prof’s observations. Statistical regression and other ma-
chine learning techniques are essentially optimization problems;
one does not compute the “right” model, rather one selects the
model that minimizes some measure of error.

Power Law Models. Our interest in measuring the scalability
of a program led us toward power law models. A power law pre-
dicts y as a constant times a power of x, that is y = axb. To fit
observations to a power law, trend-prof uses linear regression
on (logxi, logyi). In other words, trend-prof finds a and b that
minimize the following quantity.

k

∑
i=1

(logyi − (loga+b log xi))
2 =

k

∑
i=1

(

log
yi

axb
i

)2

On log-log axes, the plot of a power law is a straight line. The
power law fit has a number of advantages.

• It is low-dimensional; it estimates only two parameters.
Models that estimate many parameters are subject to over-
fitting and require a lot more data.

• It focuses attention on the highest order term.

• It minimizes relative error; that is, it tolerates larger errors
on larger input sizes. For instance, the model’s predicting
a basic block executes 100 times when it actually executes
1000 times is much more serious than predicting that it runs
1000 times when it actually runs 2000 times.

• It produces simple models that are easy to understand.

• It is usually close enough. We recognize bad fits and report
them as such. Inspection of the residuals plot often reveals
when there is an important lower order term.

Since the logarithm of 0 is not defined, trend-prof ignores
points where the observed execution count is 0 when fitting to a
power law. Thus, the models produced predict how many times
a basic block is executed if it is executed at all. The output of
trend-prof reports how many points were 0, and thus ignored,
for each model. Some models may thus be fit from very few data
points. After looking at some of these fits of few data points, we
chose to have trend-prof not display models constructed with
fewer than 10 data points. Models constructed with so few points
do not convey much information and are unlikely to make accurate
predictions.

Linear Models. In addition to fitting to a power law,
trend-prof also fits the data for each basic block to a linear
model, that is ŷ = a + bx via linear regression (xi,yi). Linear re-
gression finds a and b that minimize the following quantity.

k

∑
i=1

(yi − (a+bxi))
2

The quantity ri ≡de f yi − (a + bxi) is called the residual of the fit
at (xi,yi). Notice that linear regression minimizes the sum of the
squared residuals.

3.3.1 How good is a model?
There are a number of ways for the user of trend-prof to

evaluate the usefulness of a particular model. For each model,
trend-prof shows the data points and the line of best fit. In-
specting the plot is good way to decide if trend-prof’s model
is plausible. Plots are not very compact, however, so on its sum-
mary page, trend-prof reports both the R2 statistic for the fit,
and the mean relative error (MRE) (proposed by Brewer [2] as a
measure of goodness of fit for models of program performance).
Values for R2 range from 0 (bad) to 1 (excellent). Values for MRE
range from 1 (excellent) upwards (worse). We follow Brewer’s ex-
ample and report MRE as a percentage, 100× (MRE −1)%; so an
MRE of 1.00 means 0% error, an MRE of 1.035 is 3.5% error, and
an MRE of 3.00 is 200% error.

We review the formulae for R2 and MRE below. The same for-
mulae apply to power law fits, but with x replaced by logx and y

replaced by logy.

ŷi =de f a+bxi

y =de f
1
k

k

∑
i=1

yi

R2 =de f
∑k

i=1(ŷi − y)2

∑k
i=1(yi − y)2

MRE =de f
k

√

√

√

√

k

∏
i=1

yi + |yi − ŷi|

yi

The plot of the residuals versus input size (xi, ri) is another impor-
tant tool for determining whether a model captures all of the varia-
tion in a data set. The residuals plot should look like random noise.
Any pattern in the residuals plot is an indication that there is more
going on than the model describes – essentially a lower-order term
is missing from the model. One case where trend-prof’s power
law model misses such a term is with logarithmic factors. Consider
calling the qsort function in C and measuring how many times
(user supplied) comparison function is called. One would expect
the number of calls to scale as O(n logn) in the size of the array
being sorted.

Figure 2 shows trend-prof’s powerlaw model for this sce-
nario and the residuals plot. The diamond shaped points show the
observations used to construct the model; they range in size be-
tween 16 and 64,000. The line shows the best power law fit to
these points ŷ = 1.5x1.16. The fit closely tracks the data, but it’s
clear from the residuals plot that there is more going on. The hump
shaped residuals suggest that the data grows more slowly than the
power law suggests; such a shape suggests a logarithmic factor.

The circular points show further observations of the compari-
son function on larger input sizes that those used to construct the
model. Even at input sizes several orders of magnitude larger than
the largest training point, the model is within a factor of two from
the measurement. At array size four million the model estimates
about 68 million compares; we observed about 43 million (about
37% error).

In such cases, a power law model does not exactly describe the
data. For our purposes, however, it is good enough. It shows the
performance trend of the comparison function and gives a way to
compare its empirical computational complexity to other parts of
the program. Essentially, we have made a trade-off: our models are
simple at the cost of not modeling some lower order terms.

3.4 Input Size
It is important for the user to pick a useful measure of input size;

to trend-prof these input sizes are just numbers that it dutifully
fits to models. To the extent that the input size is a good predictor of
the execution count, the observations will be tightly clustered and
a suitable model will fit the data well. To the extent that the input
size is not a good predictor, the observations will look like random
noise and no model will be able to say much about the program.

For many programs file size in bytes is a reasonable notion of
input size. See Figure 4 for examples of programs on which we
ran trend-prof and the notion of input size we chose. For file
compression programs such as bzip2 and gzip, file size is the only
sensible measure of input size. For a graph processing program like
dot, however, we conjecture that the number of edges (or nodes)
in the input graph is a better predictor of performance than file size.
Measuring the size of an input to programming language tools is
harder. For our inputs to banshee we had data available about
how many abstract syntax tree nodes each input file yielded; for

gcc and elsa files size was all we had.
Choosing the right measure of input size can be rather subtle. In

constructing workloads for our selection sort example, we wrote a
script to output sequences of random integers as text; when gen-
erating n random integers, we would generate integers between 1
and n. This feature is benign except when combined with using the
size of these files as the input size. Since larger numbers require
more digits, the file size grew as O(n log n) with the number of in-
tegers. The resulting models concluded that selection sort executed
0.19 n1.78 comparisons on a file of size n, about what one might
expect for a power law approximation of n2

logn . We found the bug
because the residuals plot suggested the presence of a logarithmic
factor.

In addition to picking a good measure of input size, it is also
important that a user of trend-prof pick a set of workloads
that span the space of possible inputs to the program. The mod-
els trend-prof constructs will be representative of the chosen
workloads; the model will be a good predictor of a new workload
only to the extent that the new workload is like the ones on which
trend-prof was initially run.

3.5 Implementation Details
Our tool, trend-prof, takes the following as input:

• A C or C++ program compiled and instrumented with
gcc -ftest-coverage -fprofile-arcs to measure
how many times each basic block is executed.

• A set of workloads annotated with input sizes.

In addition to the performance models for each basic block,
trend-prof outputs an annotated copy of each source file with
the model for a basic block next to the source lines corresponding
to that block. Finally, trend-prof outputs a summary page that
shows any user-specified combination of the following.

• For some user-specified input size, evaluate the model for
each basic block at that input size and rank the basic blocks
by predicted execution count at that input size.

• The models for each basic block, sorted by exponent.

• A model that predicts how many total basic blocks the pro-
gram executes as a function of input size.

• An index of all the annotated source files.

4. EXPERIMENTS
We ran trend-prof on the programs listed in Figure 3 with

workloads as described in Figure 4. In this section we report inter-
esting facts and trends that trend-prof found in both the pro-
grams and the inputs.

The output of trend-prof is configurable as described in Sec-
tion 3.5. For these experiments, we looked at models for basic
blocks ranked in the following ways:

• highest exponent first

• highest predicted number of times the basic block executes
at an input size near the largest measured input size

• highest predicted number of times the basic block executes at
an input size about ten times larger than the largest measured
input size

The tables and plots in this section give a feel for trend-prof’s
output. In its output trend-prof often presents the same model
for several consecutive lines of code. In presenting results, we filter
out this extraneous information.

10

100

1000

10000

100000

1e+06

1e+07

1e+08

10 100 1000 10000 100000 1e+06 1e+07

training set
further observations

best powerlaw fit on training set
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

2 3 4 5 6 7 8 9 10 11 12

Residuals of quicksort fit

Figure 2: On the left is a log-log plot of number of comparisons done in a call to qsort (y axis) versus the size of the array (x axis).
On the same plot, we show the best powerlaw fit to the diamond shaped points (ŷ = 1.5 n1.16, R2 = 0.999, MRE = 1.0%). On the right
is the residuals plot for the power law fit.

Program Description Workloads
gzip 1.2.4 [8] Compresses files Tarballs of preprocessed source code
bzip2 1.0.3 [3] Compresses files Tarballs of preprocessed source code
gcc 4.0.2 [6] C and C++ compiler Preprocessed C and C++ programs
banshee 2005.10.07 [11] Computes Andersen’s alias analysis [1] on a C program Preprocessed C programs
elsa 2005.10.14 [5] Parses, typechecks, and elaborates C and C++ code Preprocessed C and C++ programs
maximus Ukkonen’s suffix tree algorithm [14] for finding common

substrings
C source code

dot Part of Graphviz [4] 2.6; renders a graph as postscript Dataflow graphs of C and C++ programs
jpgToPng Part of ImageMagick [9] 6.2.5.1; converts JPEG images to

PNG images
JPEGs downloaded from an image
search

Figure 3: Programs for which we present performance models and descriptions of the workloads for each program.

Program Smallest
workload

Largest
Workload

Number of
Workloads

gzip,
bzip2

1.02×105 B 1.47×109 B 4137

jpgToPng 6×103 B 3.5×106 B 304
dot 3 edges 5.78 × 104

edges
146

banshee 7.0 × 102

AST nodes
2.1 × 106

AST nodes
31

gcc, elsa 1.0×102 B 4.59×106 B 253
maximus 7.3×102 B 6.5×105 B 36

Figure 4: Smallest workload, largest workload, and number of
workloads for each program.

4.1 gzip: Just Plain Linear
We ran trend-prof on gzip, a mature program for compress-

ing and decompressing files. A workload for gzip consists of com-
pressing a tarball full of preprocessed source code. The size of the
workload is the size of the input file. We ran 4137 workloads.

Figure 5 shows the top ranked basic blocks for gzip. The results
show that gzip scales very nearly linearly with the size of its input;
the highest exponent is 1.03. For reference, at the astronomical
input size of 1020 bytes, the model predicts 2.5(1020)1.03 ≈ 1021,
roughly a factor of 4 more than 2.5(1020). Despite the fact that
most basic blocks in gzip scale linearly, a power law is nonetheless
a good fit.

4.2 gcc: The Program as a Feature Detector
for Trends in the Data

We exercised gcc in its capacity as a C and C++ compiler. A
workload for gcc consists of compiling a preprocessed source file

File Line Model R2 MRE Prediction at
n = 108

deflate.c 517 2.5 n 1.03 0.99 0.3% 4.06×108

deflate.c 542 0.62 n 1.03 0.99 0.4% 1.01×108

util.c 74 n 1.00 0.02% 1.00×108

Figure 5: Some top ranked basic blocks for gzip when sorted
by predicted number of executions at input size n = 108 bytes.

100000

1e+06

1e+07

1e+08

1e+09

1e+10

100000 1e+06 1e+07 1e+08 1e+09 1e+10

observations
best power law fit

Figure 6: Log-log plot of observations and best powerlaw fit
(ŷ = 2.5×n1.03, R2 = 0.999, MRE = 0.3%) for top ranked result
for gzip: deflate.c, line 517.

1

10

100

1000

10000

100000

1e+06 1e+07

observations
best power law fit

Figure 7: Observed basic block counts and best power law fit
(ŷ = 6.1×10−29n4.92, R2 = 0.77, MRE = 21%) showing a trend
in the workloads for gcc (search.c, line 1655).

with most optimizations enabled (gcc -O3). The size of a work-
load is its size in bytes. As we discussed in Section 3.4, we conjec-
ture that a more application-specific notion of input size is would
yield tighter fits, but size in bytes is a reasonable first approxima-
tion.

At input size 1 MB, the lexer and parser dominate. At input
size 10 MB, a new tend becomes apparent. There is a basic block
that trend-prof predicts will execute (1.5×10−36)n6.18 on an
input of n bytes (about 27 million times on a 10 MB input). Some
investigation shows that this code is concerned with clearing the
visited flag for a depth first search of a class’s superclasses and
that it is invoked from the following code (which we present as
pseudocode) from search.c. If no two of a node’s superclasses
inherit directly from the same class (that is, if there are “diamond”
patterns in the superclasses), then the DFS is guaranteed to never
visit a node more than once. In this case, gcc invokes a faster
version of DFS that does not need to mark visited nodes nor clear
these marks when it is done.

if (no diamonds(node))
// DFS cannot encounter the same
// node via multiple paths.
rval = dfs without marking (node);

else
rval = dfs with marking(node);

According to trend-prof’s model, the if statement is exe-
cuted 0.0045n1.10 times on an input of size n. The then branch
is executed 0.0061n1.07 times, but the else branch scales as
6.1×10−29n4.92 (Figure 7). Clearly the if statement is not adding
a factor of n3.8. What trend-prof has found is a trend in the
workloads: as workloads get larger, a sharply increasing number
of them have diamond inheritance patterns. In addition to finding
trends in the program, trend-prof also uses the program as a
feature detector for finding trends in the input data.

Examination of the scatter plots for this code confirms that the
optimized (true) branch of this if statement is indeed the common
case for the inputs on which we ran gcc. The models, however,
predict that for input sizes somewhere around 107 bytes the non-
optimized case will be more common. So, trend-prof can find
optimizations that yield diminishing returns with larger inputs.

4.3 Elsa: A Quadratic Performance Surprise
Elsa is a C and C++ front end; it parses and typechecks C and

C++ code and elaborates implicit syntax in C++. We ran it on the
same workloads as gcc.

Source File Line Model R2 MRE Prediction
at n = 107

tree.h 166 0.00092 n1.50 0.94 6.5% 2.80×107

search.c 1667 1.5×10−36 n6.18 0.77 24% 2.77×107

search.c 456 0.0014 n1.44 0.96 5.9% 1.58×107

search.c 2491 7.0×10−30 n5.19 0.78 16% 1.53×107

parser.c 428 0.99 n1.02 0.97 3.2% 1.34×107

Figure 8: Some top ranked basic blocks for gcc when sorted by
predicted number of executions at input size n = 107 bytes.

0.01
0.1

1
10

100
1000

10000
100000
1e+06
1e+07
1e+08

100 1000 10000 100000 1e+06 1e+07

best power law fit
observations

Figure 9: Observed basic block counts and best power law fit
(ŷ = 3.7× 10−8 n2.16, R2 = 0.8534, MRE = 28%) for the loop
body of the performance bug in elsa (line 146, lookupset.cc).

One of the top ranked models for elsa is a quadratic insert
into a set (that is, a linear time insert that is called a linear num-
ber of times). In the code below, trend-prof predicts that
LookupSet::add is called 0.002 n1.26 times on an input of size n.
The loop body is predicted to be executed 3.7× 10−8 n2.16 times,
approximately a linear factor more. Figure 9 shows the observa-
tions and the power law model for the loop body.

void LookupSet::add(Variable *v) {
foreach elem in this

if (sameEntity(v, elem)) return;
add(v);

}

The developer points out that the sets are small, and indeed they are
for the input sizes we measured. The model predicts, however, that
at input sizes of 108 bytes, the body of this loop will execute more
than 109 times. The developer agrees that the trend constitutes a
low priority performance bug.

Another of the top ranked trends for elsa is an optimization
of traversal of the inheritance graph similar to the one we found
in gcc. Again, trend-prof’s output showed a trend in the data;
there are more diamond shaped inheritance patterns in larger source
files.

4.4 Ukkonen’s algorithm: Linear Data Struc-
ture, but Super-Linear Output

Ukkonen’s algorithm [14] finds common substrings in a string
by constructing a data structure called a suffix tree. We ran
trend-prof on an implementation of Ukkonen’s algorithm in a
tool called maximus. A workload for maximus consists of a string;
the size of a workload is the number of characters in the string. We
used source files for pine [12], a popular email client, as work-
loads.

We looked at trend-prof’s models for the constructors for
suffix tree edges (ŷ = 1.1 n1.00, R2 = 0.99, MRE = 3%) and nodes

1

10

100

1000

10000

100000

1e+06

1000 10000 100000 1e+06

suffix tree edges
best power law fit for edges

suffix tree nodes
best power law fit for nodes

Figure 10: Observed execution counts and and power law fits
for the suffix tree node and suffix tree edge constructors in
maximus.

100

1000

10000

100000

1e+06

1e+07

100 1000 10000 100000 1e+06

observations
best power law fit

Figure 11: The trend-prof power law model showing the
super-linearity in maximus’s output routines.

(ŷ = 0.29 n1.02, R2 = 0.99, MRE = 4%) to confirm that the size
of the suffix tree scaled linearly in the size of the input (shown in
Figure 10). This knowledge is a comfort since Ukkonen’s algo-
rithm is difficult to implement correctly and bugs tend to make it
quadratic or worse. Although the suffix tree code scales linearly,
trend-prof found a super-linearity (ŷ = 0.024 n1.34, R2 = 0.99,
MRE = 5%) in the code to render output (Figure 11 shows the ob-
servations and line of best fit for this code). The developer was
initially surprised by this super-linearity, but after some reflection
he understood its cause. The suffix tree representation of common
substrings in a string is too compact to be comprehensible to a hu-
man, so maximus expands it. Operationally, for certain nodes in
the suffix tree, the output routine must print something for each of
the node’s leaves and then recursively do the same thing for each
of its children.

4.5 Banshee: Empirical Complexity Differs
from Theoretical Worst-Case Complexity

We ran trend-prof on banshee, a program analysis frame-
work [11]. Specifically, we ran trend-prof on banshee’s im-
plementation of Andersen’s pointer analysis [1]. We used as work-
loads preprocessed C programs. The size of a workload is the num-
ber of abstract syntax tree nodes in the workload.

We found a scalability bug in the C parser that banshee uses
for its Andersen’s analysis. The model for the last node function
below predicts that it is called 0.076 n1.24 times and that the loop
body executes 0.028 n1.71 times on an input of size n. These pre-
dictions suggest that the average size of these lists grows as n0.47

and that at workload sizes of 107 AST nodes, this line of code will
be executed more than any other line in the program. Clearly, a
pointer to the last node in the list is called for.

Source File Line Model R2 MRE Prediction
at n = 107

AST.c 34 0.028 n1.71 0.94 5.4% 132×1010

hashset.c 119 0.000021 n1.95 0.83 25% 8.28×1010

hash.c 299 0.0084 n1.58 0.96 4.9% 3.88×1010

env.c 54 7.8 n1.18 0.99 1.8% 2.12×1010

hashset.c 98 0.000098 n1.79 0.84 17% 1.94×1010

jcollection.c 265 0.000018 n1.86 0.85 24% 1.33×1010

hash.c 301 0.0029 n1.58 0.96 5.3% 1.31×1010

Figure 12: Some top ranked basic blocks for banshee when
sorted by predicted number of executions at input size 107 AST
nodes.

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

1e+10

100 1000 10000 100000 1e+06 1e+07

observations
best power law fit

Figure 13: Observed basic block counts and best power law fit
(ŷ = 0.028 n1.71, R2 = 0.9386, MRE = 5.4%) for the loop body of
the performance bug in banshee (AST.c, line 34).

node last node(node n) {
if (n) return NULL;
while (n->next) n = n->next;
return n;

}

The interesting thing about the banshee results is that Ander-
sen’s analysis is a worst-case cubic algorithm. In practice though,
the workloads we measured scaled much better than that. All of
the top ranked fits at input size 108 AST nodes (see Figure 12) had
scalability better than n2. The reason banshee has sub-cubic be-
havior is its extensive optimizations that dramatically improve the
common case; trend-prof allows us to quantify that improve-
ment.

5. PROGRAMS MOSTLY SCALE AS A
POWER LAW

The primary goal of trend-prof is to model empirically the
scalability of programs. The basic blocks that are least important to
scalability are those that are executed a constant number of times;
that is, those whose execution count has no relationship to the size
of the input. That is not to say that the most important basic blocks
are those that execute the most – a basic block that looks innocent
for medium size inputs could explode into super-linear behavior on
larger inputs; however, the quality of trend-prof’s models for
basic blocks that are barely executed is of little importance.

In many cases, trend-prof constructs power law or linear
models that are a good fit for the observed data. There are, how-
ever, many models that do not fit as well. What we argue in this
section is that trend-prof’s models are adequate for most of
the interesting basic blocks in the program.

The best way to decide if a model fits observed data is for a
human to look at the scatter plot and a line of best fit. If the regular

0

0.2

0.4

0.6

0.8

1

1 1.05 1.1 1.15 1.2

elsa
gcc

bzip
gzip
dot

jpgToPng
banshee

maximus
0

0.2

0.4

0.6

0.8

1

0.20.30.40.50.60.70.80.91

elsa
gcc

bzip
gzip
dot

jpgToPng
banshee

maximus

Figure 14: Goodness of fit (x) versus percentage of total basic block executions whose models fit better than x. The left plot shows
MRE; the right plot shows R2. For each basic block, we take the better MRE or R2 of the linear and power law models. Graphically,
lots of area under a line is good.

scatter plot looks like a line, then the code probably scales linearly.
If, the log-log scatter plot looks like a line, then the code probably
scales as a power law. Since trend-prof generates many models
for a program, we must also rely on the MRE and R2 as measures
of goodness of fit.

5.1 Automatically Measuring Goodness of Fit
Figure 14 and Figure 15 show the relationship between how

much a basic block executes and how good, according to the MRE
and R2 statistics, trend-prof’s model for that basic block is.
For each goodness of fit x (MRE on the left, R2 on the right), Fig-
ure 14 shows what percentage of total basic block executions have
a model whose goodness of fit is x or better. In other words, if you
move your finger up from R2 = 0.80, the y coordinate where you
hit the line shows what percentage of the total execution count of
all basic blocks has a model that fits better than R2 = 0.80. Graph-
ically, a line with a large amount of area underneath it shows that
trend-prof’s models do well for many of the basic blocks that
execute the most times.

Figure 15 gives another view onto the goodness of fit versus ex-
ecution count issue. Each plot in this figure is actually two plots
compressed into one. The x axis (log scale) is the total number of
times a basic block was executed. The y axis above the line at 1
shows the MRE (lower MRE is better) versus the total count. The
y axis below the line shows R2 (higher R2 is better) versus the total
count. Both gzip and maximus fit important basic blocks well ac-
cording to both MRE and R2. According to the MRE, dot also fits
important basic blocks well and even gcc is mostly pretty good.
Our other benchmark programs lie somewhere in the middle.

Although trend-prof does not perfectly predict the execution
count of every basic block in the program, it does pretty well. For
some of our programs trend-prof constructs good models for
almost all basic blocks of any importance. For more complex pro-
grams like gcc, elsa, and to a lesser extent dot and jpgToPng,
trend-prof constructs good models for many important basic
blocks, but mediocre or bad models for others. The MRE, R2, and
residuals plots give users enough information to disregard bad mod-
els. These plots show that in general, the bad fits are concentrated
in the basic blocks with low execution counts. In particular, there
are few basic blocks that execute many times and have a bad fit.

5.2 Fits that are “Good Enough”
Figure 16 shows a fit is not perfect, but is “good enough” . There

is some sort of trend and the model shows it, but the fit is noisy.
The MRE and R2 agree that the fit is middling.

1

10

100

1000

10000

100000

1e+06

1e+07

100 1000 10000 100000 1e+06 1e+07

observations
best powerlaw fit

Figure 16: Observations and best power law fit (ŷ =
9.2 × 10−6 n1.8, R2 = 0.81, MRE = 30%) for banshee’s
engine/jcollection.c, line 227.

5.3 Bad Fits
We present a few examples of bad fits and discuss the implica-

tions to our technique.
Figure 17 shows a situation where there is a fairly clear trend

in a dense cloud of points, but with a few extreme outliers. The
R2 statistic penalizes the fit severely, but the MRE is not so bad.
In more extreme cases, we have observed a data set where every
observation but one or two was the same; again the R2 was terrible,
but the MRE was fine. Such fits are actually quite good, but blindly
relying on R2 would cause one to reject them.

Figure 18 shows a situation where there is no clear trend or pat-
tern. We doubt that any simple model describes the behavior of this
basic block with respect to the input image size. It is possible that
some other notion of input size would lead to a tight model.

6. RELATED WORK
The main branches of related work are other profilers and other

techniques that use empirical models of program performance.

6.1 Profilers
Gprof [7] and many profilers like it periodically sample the pro-

gram counter during a single run of a program. A post-processing
step propagates these samples through the call graph of the program
to estimate how much of the program’s running time was spent in
each function. Such profilers are the standard way to find opportu-
nities to improve a program’s performance.

0.6

0.8

1

1.2

1.4

100001000001e+061e+071e+081e+091e+101e+111e+121e+13

gzip MRE
1

gzip R2

0.6

0.8

1

1.2

1.4

100001000001e+06 1e+07 1e+08 1e+09 1e+10 1e+11 1e+12

dot MRE
1

dot R2

0.6

0.8

1

1.2

1.4

10000 100000 1e+06 1e+07 1e+08 1e+09 1e+10

maximus MRE
1

maximus R2

0.6

0.8

1

1.2

1.4

1e+06 1e+07 1e+08 1e+09 1e+10 1e+11 1e+12

gcc MRE
1

gcc R2

Figure 15: Goodness of fit (y axis) versus total number of executions of a basic block (x axis; log scale) for gzip, dot, maximus, and
gcc. Above the line shows MRE versus total count. Below the line shows R2 versus total count. We would like the basic blocks that
are executed the most to have good fits. Graphically, we would like the upper right (MRE) and lower right (R2) areas of the graph to
be empty.

1

10

100

1000

10000

100000

1e+06

1e+07

1e+08

1000 10000 100000 1e+06 1e+07

observations
best power law fit

Figure 17: Observations and best power law fit (ŷ = 3.7 n1.01,
R2 = 0.53, MRE = 6.6%) for jpgToPng’s coders/jpg.c, line
646.

1

10

100

1000

10000

100000

1000 10000 100000 1e+06 1e+07

observations
best power law fit

Figure 18: Observations and best power law fit (R2 = 0.097,
MRE = 140%) for jpgToPng’s coders/png.c, line 5958.

Jinsight EX [13] exhaustively traces the execution of a program,
recording the number of objects of a particular type that are al-
located, the number a times a method is called, etc. The user may
interactively browse this data to explore the performance of the pro-
gram.

We built trend-prof to answer questions that these tradi-
tional profilers do not address explicitly. These profilers present
information about one run of the program. The output of
trend-prof presents a view across many runs with an eye to-
ward finding trends and predicting performance on workloads that
have not been run.

6.2 Building Models of Program Performance
Kluge et al. [10] focus specifically on how the time a parallel pro-

gram spends communicating scales with the number of processors
on which it is run. In our terms, they construct an empirical model
of computational complexity where their measure of performance,
y, is MPI communication time and their measure of workload size,
x, is number of processors. They fit these observations to a degree
two polynomial, finding a, b, and c to fit (ŷ = a + bx + cx2). Their
goal is to find programs that do not parallelize well; that is, pro-
grams whose amount of communication scales super-linearly with
number of processors. Any part of the program with a large value
for c is said to parallelize badly. The goal of trend-prof is more
general; we aim to characterize the scalability of a program in terms
of a user-specified notion of input size.

Brewer [2] constructs models that predict the performance of a
library routine as a function of problem parameters; for instance
he might model the performance of a radix sort in terms of the
number of keys per node, radix width in bits, and key width in
bits. Given a problem instance and settings of the parameters, the
model predicts how several implementations of the same algorithm
would perform. Based on the prediction, the library chooses an
implementation of the algorithm to run the instance of the problem.
The user must choose the terms for a model; powers of the terms

are not considered in building the model, but cross terms are. For
instance, for problem parameters l, w, and h, the model is in terms
of

ŷ = c0 + c1l + c2w+ c3h+ c4lw+ c5lh+ c6wh+ c7lwh

Brewer’s goal is to choose among several fairly well-understood
implementations of an algorithm. The models serve to predict how
an implementation will fare on particular problem instance on a
particular architecture. The requirement that the user provide the
terms for the model assumes a deeper level of understanding of the
code’s performance than trend-prof does. The resulting mod-
els can be more descriptive and precise, but each implementation
of each algorithm must be considered separately and terms chosen
carefully. In contrast, trend-prof seeks to describe the scalabil-
ity of each of the many basic blocks in a large program and focus
the user’s attention on those with performance or scalability prob-
lems. Our simpler, more automatic modeling is more appropriate
for our goals.

7. CONCLUSION
We propose models of empirical computational complexity for

describing the performance of programs in practice. Our tool,
trend-prof, measures runs of a program on many workloads
and constructs linear and power law models of empirical computa-
tional complexity that predict how many times each basic block in
a program runs as a function of input size. Linear and power law
models fit observed basic block counts well for frequently executed
basic blocks. Using trend-prof, we found some performance
bugs and some characteristics of our workloads.

Many research papers present performance results for com-
plex systems as a chart or a scatter plot of performance measure-
ments. In contrast, our approach allows more precise, quantitative
claims as well as revealing components that have interesting per-
formance behavior not visible in the overall performance observa-
tions. In particular, one can report both the highest exponents that
trend-prof predicts and trend-prof’s predictions at input
sizes an order of magnitude or two higher than those measured.

8. ACKNOWLEDGMENTS
Blank because of double blind submission.

9. REFERENCES
[1] L. O. Andersen. Program Analysis and Specialization for the

C Programming Language. Ph.d. thesis, DIKU, Unversity of
Copenhagen, 1994.

[2] E. A. Brewer. High-level optimization via automated
statistical modeling. In PPOPP ’95: Proceedings of the fifth
ACM SIGPLAN symposium on Principles and practice of
parallel programming, pages 80–91, New York, NY, USA,
1995. ACM Press.

[3] bzip2 project homepage. http://www.bzip.org/.
[4] graphviz project homepage.

http://www.graphviz.org/.
[5] elsa project homepage.

http://www.cs.berkeley.edu/∼smcpeak/
elkhound/sources/elsa/.

[6] gcc project homepage. http://gcc.gnu.org/.
[7] S. L. Graham, P. B. Kessler, and M. K. Mckusick. Gprof: A

call graph execution profiler. In SIGPLAN ’82: Proceedings
of the 1982 SIGPLAN symposium on Compiler construction,
pages 120–126, New York, NY, USA, 1982. ACM Press.

[8] gzip project homepage. http://www.gzip.org/.
[9] Imagemagick project homepage.

http://www.imagemagick.org/.
[10] M. Kluge, A. Knüpfer, and W. E. Nagel. Knowledge based

automatic scalability analysis and extrapolation for mpi
programs. In Euro-Par 2005 Parallel Processing: 11th
International Euro-Par Conference, Lecture Notes in
Computer Science. Springer-Verlag.

[11] J. Kodumal and A. Aiken. Banshee: A scalable
constraint-based analysis toolkit. In SAS ’05: Proceedings of
the 12th International Static Analysis Symposium. London,
United Kingdom, September 2005.

[12] pine project homepage.
http://www.washington.edu/pine/.

[13] G. Sevitsky, W. de Pauw, and R. Konuru. An information
exploration tool for performance analysis of java programs.
In TOOLS ’01: Proceedings of the Technology of
Object-Oriented Languages and Systems, page 85,
Washington, DC, USA, 2001. IEEE Computer Society.

[14] E. Ukkonen. A linear-time algorithm for finding approximate
shortest common superstrings. In Algorithmica, volume 5,
pages 313–323.

