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The Decompositional Approach to Matrix Computations, cont’d

We will examine various methods for computing the QR factorization of
an m X n matrix A,

A=QR, rank(Ad)=r, QIQ=T (1)

where R is upper triangular. Let A = [a1a2---a,] and Q = [q1g2 - - ¢n] be
column partitionings of A and @), respectively. Setting columns of A and
QR equal to one another yields the classical Gram-Schmidt process:
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While this procedure is elegant as a mathematical algorithm, it has poor nu-
merical qualities in a practical implementation. This is due to catastrophic
cancellation that occurs if the columns of A are nearly parallel. The Modified
Gram-Schmidt algorithm is more stable.

A second method relies on Householder reflections. Suppose that we
define a matrix P by

P=TI-2uu", wu=1
for some vector u. Then
e P is symmetric, i.e. P = PT
e P is orthogonal, i.e. PP =1.

Given a vector a, we would like to choose u so that Pa = aej, where « is a
scalar and el = [10---0]. The orthogonality of P determines c:

[1Pallz = llallz = llaeil2 = lallleills = |ef



which yields & = £||a/|2. Using the definition of P, we obtain
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This yields
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From this method of choosing u to zero selected elements, we can now de-
velop the algorithm for computing the QR factorization using Householder
transformations. Proceeding as above with a = a1, we obtain

11 ™2 - Tin

0
=AM =
PA=A A

where A is (m — 1) x (n — 1) and Piaj = agl)

j =2,...,n we compute

for j = 2,...,n. Note for

Pa; = (1-2uju])a;

T
= aj—u1, Y= 2uja;

from which it follows that we can compute each column of the updated A
in parallel. Now
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and in general we have PjA(jfl) = AU) for j = 2,...,n resulting in a matrix

A which is upper triangular. The number of operations required for this



process is
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or 2n%/3 when m = n.
So, since we have
z%ngaAzlgl

it follows that

A:G%UEHF[§]
and therefore Q = P; --- P,,. We do not need to store the matrices P; but
only the vectors uj. The collection {uj,us,...,u,} can be stored in the
lower triangular portion of an m x n matrix, so we can store the entire
QR factorization in a compact form by storing the nonzero elements of the
vectors u1, ..., Uy in the lower triangular portion of A, and the nonzero
elements of R in the upper triangular portion.

If A is itself an orthogonal matrix, then R must be a diagonal matrix,
with each diagonal entry equal to £1, since R would be both orthogonal
and upper triangular. It follows from our compact representation of the QR
factorization that every orthogonal matrix can be expressed as n(n + 1)/2
parameters. This could be a good way to generate a random orthogonal
matrix: choose that many parameters randomly, and apply Householder
transformations based on the resulting vectors wi,...,un, to the identity
matrix.

Finally, we discuss an algorithm due to Jacobi, whose work from the 19th
century was later popularized by Givens. Consider the matrix Z;; defined



by

cos 0;; sin 6;;

—sin gij COS Hij

1

It can be shown that Z%Zij = I,. Given a vector [ab]l we would like to
choose 6 so that

cosf sinf a| | Va?+0b?
—sinf cosé b | 0 )

From this system of linear equations we obtain

b a b
tanf = —, cosf =+t——, sinf=—7+——.
a a? + b2 ++v/a? + b?

Choosing 6;; in this manner for select ¢ and j, with a and b chosen from
a matrix that we are trying to reduce to upper triangular form, we can
compute the QR factorization of A as follows:
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This process can be shown to be very stable. It is also well-suited for paral-
lelization, since each rotation only affects two rows. For example, one could
zero elements starting from the lower left corner, proceeding by diagonal.

We can use these different techniques for different problems, but why are
we interested in the QR factorization? It is very useful in linear least-squares
problems, where given an m x n matrix A, with m > n and rank(A) = n,
along with a right side b, our goal is to find the linear least squares solution
z that minimizes ||b — Az||o. We can proceed as follows:

Ib—Azl3 = [1Q"b— Q" Ax])3
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It follows that the solution is easily obtained by solving the upper triangular
system Rx = c. We can summarize the procedure as follows:

1. Find the QR factorization of A

2. Compute QTb = [ ccl ]

3. Solve Rz = c.

Note that if we change the right-hand side, we can easily solve the mod-
ified problem when the Q)R factorization is known. So, given A and g, along
with the QR factorization of A, we can find y that minimizes ||g — Ay||2 as
follows:

1. Compute lg] =Q%g



2. Solve Ry = p.

We now illustrate another use of the QR factorization. Suppose b— Ax =
z where z is the solution to the least squares problem. Then

- = oee[ g ][ @[]
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The matrix multiplying b in the last step is called the projection matrizx,
which projects b onto the orthogonal complement of the column space of A.

The QR factorization is also useful for updating and downdating. Sup-
pose A is mi1 X n, As is ma X n, and the QR factorization of A1, A1 = Q1 Ry,

is known. Then
[ Q? O ‘| [ Iy ] - 131
0 I Ao Ay

Rearranging rows on the right side, we can then complete the QR factoriza-
tion of the updated matrix:

0|5 ) [5)
0

Sometimes my = 1 and in this case we apply Jacobi rotations to zero the
appropriate elements of the updated matrix.
What happens if A is m x n and rank(A) = r < n? We can choose a
permutation matrix II so that
T Rrxr S
All =

where S is 7 x (n — r). Computing the QR factorization of IITATQ, we
obtain
U 0
T AT )y _
wT (T ATQ) = [ ; o]



where U is an r X r upper triangular matrix. Defining Z = IIW, we obtain
the complete orthogonal decomposition of A,

_ L 0} 7
aa[t 3]
Another useful decomposition is the Cholesky decomposition, which fac-

tors a symmetric positive definite matrix A into A = FT F, where F is upper
triangular. Equating A = FT'F, we have

a1 a2 v Qip fi fir fie - fin
as1 azy -+ A fi2  fo fo2 fon
anl QAanp2 *** Aapp fln fnn fnn

which yields the following formulas for the elements of F':

fii = Vau
fij = ai/fu

fo2 = \/a22 - f122

f2j (a2; — fiaf15)/ fa2

and so on. Under mild assumptions, this procedure is very stable provided
that A is positive definite. Furthermore, F' is unique when the positive
square roots are chosen for the diagonal elements, and no pivoting is nec-
essary. Therefore, any pivoting is permissible, and can be used to pre-
serve sparsity. In any case, band structure is preserved: if A is tridiagonal,
for example, then F is bidiagonal. Finally, note that if A = @QR, then
AT A = RTR, so R is the Cholesky factor of A.
Finally, we consider the singular value decomposition (SVD) of A,

A=Uxv"
where A is m x n withm >n, UTU = I,,,, VTV = I,, and

o1



where o1 > --- > o0, are the singular values of A. We see that

of

ATA=vsTsvT =V VT
2
an

so the columns of V are the eigenvectors of AT A, with corresponding eigen-
values o2, ..., 02. Similarly, the columns of U are the eigenvectors of AAT
with corresponding eigenvalues o2, ..., o2, along with (m — n) zero eigen-
values.

We now discuss some applications of the SVD. Suppose X is an n x n
matrix that is intended to be an orthogonal matrix but isn’t, due to roundoff
errors. What is the closest orthogonal matrix to X? And what do we mean
by closest?

If  is orthogonal, then the singular values are equal to 1 since Q7'Q = I.

Now, the norm that we use to describe distance from an orthogonal matrix

1/2
|A]|F = (Z |Gij|2> :
i

This norm has the properties that |PA||%2 = ||A|% and [|AQT |2 = || A|%
when P and @ are orthogonal. So we want to find @ so that

is the Frobenius norm

IX - Qllr < 1X = Qllr

where ) and Q belong to the set of all n x n orthogonal matrices. The
solution is () = UV" where X = ULV is the SVD of X. To measure X’s
departure from orthogonality, we proceed as follows:

IX-Ql% = |vzvT —uvT|%
= |=-1|}
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