
Winter 2023

CS45, Lecture 10
Build Systems & DevOps

Akshay Srivatsan, Ayelet Drazen, Jonathan Kula

1

● Understand how build systems like make and cmake work
● Understand what CI and CD systems are and how they’re used

○ See what it’s like to trigger a CI and CD pipeline
● Have concrete experience building a Makefile for a simple C project

Learning Goals

2

● When building software, there are often a bunch of commands we have
to use to build or compile that software– but that’s a boring+rote task!
○ Incremental changes and iteration are key to software development, (so

you want builds to be as seamless as possible)
○ If you’re re-typing commands often it’s possible to make mistakes, too

● We use build systems to streamline this process.
○ At its most basic, they just re-run build commands for you (GNU Make)
○ More complicated build systems can automatically download, install, and

link libraries into a project (Gradle, Maven, go, sbt, …) and/or integrate with
IDEs to give information about your project (cmake)

Compiling & Building

3

If you’ve taken CS107 or CS111 before, you’ve probably seen a Makefile before.

GNU Make (a.k.a. make) is a simple build system that follows the UNIX
philosophy of “do one small thing well.”

It reads a Makefile, which specifies a set of rules, each of which direct make
on how to build a certain file (or set of files).

make will then record which files have been changed, and only rebuild as
needed.

Intro to make

4

The only thing you need in order to use make is a Makefile– so let’s learn how
to create one!

[demo time]

Makefiles

5

Makefile rules define:

● the output (or “target”) of a rule,
● the input (or “prerequisites”) of a rule, and
● the commands that generate the output from the input

For example:

Makefile rules

sample.o: sample.c
 cc -c sample.c

6

Makefile rules define:

● the output of a rule,
● the input of a rule, and
● the commands that generate the output from the input

For example:

Makefile rules

sample.o: sample.c
 cc -c sample.c

7

Makefile rules define:

● the output of a rule,
● the input of a rule, and
● the commands that generate the output from the input

For example:

Makefile rules

sample.o: sample.c
 cc -c sample.c

8

Makefile rules define:

● the output of a rule,
● the input of a rule, and
● the commands that generate the output from the input

For example:

Makefile rules

sample.o: sample.c
 cc -c sample.c

9

Makefile rules define:

● the output of a rule,
● the input of a rule, and
● the commands that generate the output from the input

For example:

“Create sample.o from sample.c using the command cc -c sample.c”

Makefile rules

sample.o: sample.c
 cc -c sample.c

10

Makefile rules define:

● the output of a rule,
● the input of a rule, and
● the commands that generate the output from the input

Make can also deduce very simple compilations. The following rule is
exactly identical to the previous one.

“Create sample.o from sample.c using the command cc -c sample.c”

Makefile rules

sample.o:

11

Makefile rules define:

● the output of a rule,
● the input of a rule, and
● the commands that generate the output from the input

We can also make the rule depend on multiple files:

“Create sample.o from sample.c and sample-util.h using the command cc -c
sample.c”

Makefile rules

sample.o: sample.c sample-util.h
 cc -c sample.c

12

Makefile rules define:

● the output of a rule,
● the input of a rule, and
● the commands that generate the output from the input

And we can similarly shorten them:

“Create sample.o from sample.c and sample-util.h using the command cc -c
sample.c”

Makefile rules

sample.o: sample-util.h

13

Makefile rules define:

● the output of a rule,
● the input of a rule, and
● the commands that generate the output from the input

We can use this to build simple rules for many outputs:

“Create sample.o, sample2.o, and sample3.o from sample.c, sample2.c, and sample3.c (respectively) and
sample-util.h using the commands cc -c sample.c, cc -c sample2.c, cc -c sample3.c (respectively)”

Makefile rules

sample.o sample2.o sample3.o: sample-util.h

14

Makefile rules define:

● the output of a rule,
● the input of a rule, and
● the commands that generate the output from the input

Finally, we can chain rules together.

Create sample.o from sample.c using the command cc -c sample.c, then create the sample binary from sample.o by
running cc -o sample sample.o.

Makefile rules

sample: sample.o
 cc -o sample sample.o
sample.o: sample.c
 cc -c sample.c

15

Makefile rules define:

● the output of a rule,
● the input of a rule, and
● the commands that generate the output from the input

Make will automatically figure out the order to run the rules.

Create sample.o from sample.c using the command cc -c sample.c, then create the sample binary from sample.o by
running cc -o sample sample.o. Since the sample rule depends on sample.o, we’ll run the sample.o rule first.

Makefile rules

sample: sample.o
 cc -o sample sample.o
sample.o: sample.c
 cc -c sample.c

16

Makefile rules define:

● the output of a rule,
● the input of a rule, and
● the commands that generate the output from the input

If no rule is manually specified, Make always runs the first rule it finds.

(Make will automatically also run any prerequisites, if necessary, in order to run the first rule it finds successfully)

Makefile rules

sample: sample.o
 cc -o sample sample.o
sample.o: sample.c
 cc -c sample.c

17

● In the previous examples, we manually specified the files we were
building, e.g. sample.o.

● What if we wanted to write a general rule?

Wildcards & substitutions

18

● In the previous examples, we manually specified the files we were
building, e.g. sample.o.

● What if we wanted to write a general rule?

Wildcards & substitutions

objects = sample.o sample2.o sample3.o

sample: $(objects)
 cc -o sample $(objects)

$(objects): %.o:%.c
 cc -c $< -o $@

19

● In the previous examples, we manually specified the files we were
building, e.g. sample.o.

● What if we wanted to write a general rule?
● This is complicated. Let’s break it down.

Wildcards & substitutions

objects = sample.o sample2.o sample3.o

sample: $(objects)
 cc -o sample $(objects)

$(objects): %.o:%.c
 cc -c $< -o $@

20

● This Makefile contains two rules and one variable.

Wildcards & substitutions

objects = sample.o sample2.o sample3.o

sample: $(objects)
 cc -o sample $(objects)

$(objects): %.o:%.c
 cc -c $< -o $@

21

● This Makefile contains two rules and one variable.
● The objects variable contains a list of all the objects we want to

compile. We use it so we can easily change it later without changing all
our rules.

Wildcards & substitutions

objects = sample.o sample2.o sample3.o

sample: $(objects)
 cc -o sample $(objects)

$(objects): %.o:%.c
 cc -c $< -o $@

22

● This Makefile contains two rules and one variable.
● Our first rule is for compiling our executable (binary). That’s our output

program. It depends on all the objects.

Wildcards & substitutions

objects = sample.o sample2.o sample3.o

sample: $(objects)
 cc -o sample $(objects)

$(objects): %.o:%.c
 cc -c $< -o $@

23

● This Makefile contains two rules and one variable.
● The syntax $(variable_name) is an interpolation. We’re “using” the

variable here.

Wildcards & substitutions

objects = sample.o sample2.o sample3.o

sample: $(objects)
 cc -o sample $(objects)

$(objects): %.o:%.c
 cc -c $< -o $@

24

● This Makefile contains two rules and one variable.
● The syntax $(variable_name) is an interpolation. We’re “using” the

variable here.

Wildcards & substitutions

objects = sample.o sample2.o sample3.o

sample: sample.o sample2.o sample3.o
 cc -o sample sample.o sample2.o sample3.o

$(objects): %.o:%.c
 cc -c $< -o $@

25

● This Makefile contains two rules and one variable.
● Our last rule is more complicated.

Wildcards & substitutions

objects = sample.o sample2.o sample3.o

sample: $(objects)
 cc -o sample $(objects)

$(objects): %.o:%.c
 cc -c $< -o $@

26

● This Makefile contains two rules and one variable.
● Our last rule is more complicated.
● It is a “static pattern rule.” It’s like a rule that makes more rules for us.

Wildcards & substitutions

objects = sample.o sample2.o sample3.o

sample: $(objects)
 cc -o sample $(objects)

$(objects): %.o:%.c
 cc -c $< -o $@

27

● This Makefile contains two rules and one variable.
● Let’s start with the target. It’s our list of objects. (a.k.a. our input).

Wildcards & substitutions

objects = sample.o sample2.o sample3.o

sample: $(objects)
 cc -o sample $(objects)

$(objects): %.o:%.c
 cc -c $< -o $@

28

● This Makefile contains two rules and one variable.
● Let’s start with the target. It’s our list of objects.
● This static pattern rule will try to make some rules for each of our

objects.

Wildcards & substitutions

objects = sample.o sample2.o sample3.o

sample: $(objects)
 cc -o sample $(objects)

$(objects): %.o:%.c
 cc -c $< -o $@

29

● This Makefile contains two rules and one variable.
● This part to the right is our rule pattern.

Wildcards & substitutions

objects = sample.o sample2.o sample3.o

sample: $(objects)
 cc -o sample $(objects)

$(objects): %.o:%.c
 cc -c $< -o $@

30

● This Makefile contains two rules and one variable.
● This part to the right is our rule pattern. This part says to find all the

targets that end in .o (which will be all of them)

Wildcards & substitutions

objects = sample.o sample2.o sample3.o

sample: $(objects)
 cc -o sample $(objects)

$(objects): %.o:%.c
 cc -c $< -o $@

31

● This Makefile contains two rules and one variable.
● This part to the right is our rule pattern. This part says to create a rule

matching the corresponding .c file for each of the matched .o targets.

Wildcards & substitutions

objects = sample.o sample2.o sample3.o

sample: $(objects)
 cc -o sample $(objects)

$(objects): %.o:%.c
 cc -c $< -o $@

32

● This Makefile contains two rules and one variable.
● Let’s expand.

Wildcards & substitutions

objects = sample.o sample2.o sample3.o

sample: $(objects)
 cc -o sample $(objects)

$(objects): %.o:%.c
 cc -c $< -o $@

33

● This Makefile contains two rules and one variable.
● Let’s expand.

Wildcards & substitutions

objects = sample.o sample2.o sample3.o

sample: $(objects)
 cc -o sample $(objects)

sample.o: sample.c
 cc -c $< -o $@
sample2.o: sample2.c
 cc -c $< -o $@
sample3.o: sample3.c
 cc -c $< -o $@

34

● This Makefile contains two rules and one variable.
● Notice that we got one rule per target…

Wildcards & substitutions

objects = sample.o sample2.o sample3.o

sample: $(objects)
 cc -o sample $(objects)

sample.o: sample.c
 cc -c $< -o $@
sample2.o: sample2.c
 cc -c $< -o $@
sample3.o: sample3.c
 cc -c $< -o $@

35

● This Makefile contains two rules and one variable.
● …corresponding to the pattern %.o: %.c

Wildcards & substitutions

objects = sample.o sample2.o sample3.o

sample: $(objects)
 cc -o sample $(objects)

sample.o: sample.c
 cc -c $< -o $@
sample2.o: sample2.c
 cc -c $< -o $@
sample3.o: sample3.c
 cc -c $< -o $@

36

● Now let’s break down the rules themselves.

Wildcards & substitutions

objects = sample.o sample2.o sample3.o

sample: $(objects)
 cc -o sample $(objects)

sample.o: sample.c
 cc -c $< -o $@
sample2.o: sample2.c
 cc -c $< -o $@
sample3.o: sample3.c
 cc -c $< -o $@

37

● Now let’s break down the rules themselves.
● They’re almost the same as before, except for these weird $< and $@.

Wildcards & substitutions

objects = sample.o sample2.o sample3.o

sample: $(objects)
 cc -o sample $(objects)

sample.o: sample.c
 cc -c $< -o $@
sample2.o: sample2.c
 cc -c $< -o $@
sample3.o: sample3.c
 cc -c $< -o $@

38

● $< and $@ are automatic variables. They correspond to something in
the rule header/definition (the targets and prerequisites).

Wildcards & substitutions

objects = sample.o sample2.o sample3.o

sample: $(objects)
 cc -o sample $(objects)

sample.o: sample.c
 cc -c $< -o $@
sample2.o: sample2.c
 cc -c $< -o $@
sample3.o: sample3.c
 cc -c $< -o $@

39

● $< refers to the first prerequisite (input).
● $@ refers to the target (output).

Wildcards & substitutions

objects = sample.o sample2.o sample3.o

sample: $(objects)
 cc -o sample $(objects)

sample.o: sample.c
 cc -c $< -o $@
sample2.o: sample2.c
 cc -c $< -o $@
sample3.o: sample3.c
 cc -c $< -o $@

40

● $< refers to the first prerequisite (input).
● $@ refers to the target (output).

Wildcards & substitutions

objects = sample.o sample2.o sample3.o

sample: $(objects)
 cc -o sample $(objects)

sample.o: sample.c
 cc -c sample.c -o sample.o
sample2.o: sample2.c
 cc -c sample2.c -o sample2.o
sample3.o: sample3.c
 cc -c sample3.c -o sample3.o

41

● You might sometimes also see $^

(The following Makefile is also valid)

Wildcards & substitutions

objects = sample.o sample2.o sample3.o

sample: $(objects)
 cc -o sample $^

sample.o: sample.c
 cc -c sample.c -o sample.o
sample2.o: sample2.c
 cc -c sample2.c -o sample2.o
sample3.o: sample3.c
 cc -c sample3.c -o sample3.o

42

● $^ refers to all the prerequisites (inputs), space-separated

(The following Makefile is also valid)

Wildcards & substitutions

objects = sample.o sample2.o sample3.o

sample: $(objects)
 cc -o sample $^

sample.o: sample.c
 cc -c sample.c -o sample.o
sample2.o: sample2.c
 cc -c sample2.c -o sample2.o
sample3.o: sample3.c
 cc -c sample3.c -o sample3.o

43

● $^ refers to all the prerequisites (inputs), space-separated

(The following Makefile is also valid)

Wildcards & substitutions

objects = sample.o sample2.o sample3.o

sample: $(objects)
 cc -o sample $(objects)

sample.o: sample.c
 cc -c sample.c -o sample.o
sample2.o: sample2.c
 cc -c sample2.c -o sample2.o
sample3.o: sample3.c
 cc -c sample3.c -o sample3.o

44

● $^ refers to all the prerequisites (inputs), space-separated

(The following Makefile is also valid)

Wildcards & substitutions

objects = sample.o sample2.o sample3.o

sample: sample.o sample2.o sample3.o
 cc -o sample sample.o sample2.o sample3.o

sample.o: sample.c
 cc -c sample.c -o sample.o
sample2.o: sample2.c
 cc -c sample2.c -o sample2.o
sample3.o: sample3.c
 cc -c sample3.c -o sample3.o

45

● What do you think?

Wildcards & substitutions

objects = sample.o sample2.o sample3.o

sample: $(objects)
 cc -o sample $(objects)

$(objects): %.o:%.c
 cc -c $< -o $@

46

● What do you think?

Wildcards & substitutions

objects = sample.o sample2.o sample3.o

sample: $(objects)
 cc -o sample $^

$(objects): %.o:%.c
 cc -c $^ -o $@

47

● If we didn’t want to specify the objects and simply make every .c file
referenced in the Makefile into a .o file, we could do the following:

Wildcards & substitutions

objects = sample.o sample2.o sample3.o

sample: $(objects)
 cc -o sample $^

%.o: %.c
 cc -c $^ -o $@

48

● Or we could even just write this! Make knows how to do basic
transformations from .c to .o files.

Wildcards & substitutions

objects = sample.o sample2.o sample3.o

sample: $(objects)
 cc -o sample $^

49

● What if you want to create a Makefile rule that doesn’t correspond to a
real output file?

● Enter: Phony rules

Phony rules

50

● What if you want to create a Makefile rule that doesn’t correspond to a
real output file?

● Enter: Phony rules
● Phony rules lets you tell Make that it should always run a rule even if a

newer file exists with the same name.

Phony rules

51

● Let’s say we want to add a rule that cleans up our build.

Phony rules

objects = sample.o sample2.o sample3.o

sample: $(objects)
 cc -o sample $(objects)

$(objects): %.o:%.c
 cc -c $< -o $@

52

● Let’s say we want to add a rule that cleans up our build.

Phony rules

objects = sample.o sample2.o sample3.o

sample: $(objects)
 cc -o sample $(objects)

$(objects): %.o:%.c
 cc -c $< -o $@

clean:
 rm -f sample $(objects)

53

● However, if we accidentally have a file called clean we’ll have issues.

Phony rules

objects = sample.o sample2.o sample3.o

sample: $(objects)
 cc -o sample $(objects)

$(objects): %.o:%.c
 cc -c $< -o $@

clean:
 rm -f sample $(objects)

54

● So we mark it as phony to tell Make that it should always run if we ask it.

Phony rules

objects = sample.o sample2.o sample3.o

sample: $(objects)
 cc -o sample $(objects)

$(objects): %.o:%.c
 cc -c $< -o $@

clean:
 rm -f sample $(objects)

.PHONY: clean

55

● Often, you’ll see a rule called all written like this:

“all” rule

objects = sample.o sample2.o sample3.o

all: sample

sample: $(objects)
 cc -o sample $(objects)

$(objects): %.o:%.c
 cc -c $< -o $@

.PHONY: all

56

● This is just a convention. By default, make runs the first defined rule.

“all” rule

objects = sample.o sample2.o sample3.o

all: sample

sample: $(objects)
 cc -o sample $(objects)

$(objects): %.o:%.c
 cc -c $< -o $@

.PHONY: all

57

● Gradle is a build system that’s a little “smarter” than Make
○ At the cost of complexity

● Supports Java out of the box, but other languages too.
● In particular, it has the capability of automatically downloading and

linking in additional libraries and dependencies.

[gradle demo]

A brief interlude: Gradle

58

● Now that we’ve learned how to use a build system, let’s talk about
programs that run build systems and tests for us.

● CI: Continuous Integration
● CD: Continuous Deployment
● “Continuous” means “as you develop”

○ Most of these systems will run on each git commit
● CI runs builds and tests.
● CD runs deployments.

CI & CD

59

● Travis CI, Jenkins CI, Buildkite
● Runs on each commit
● Rationale: create consistent build outputs (probably executables) and

be able to tell when, where, and who when code breaks.
● Focus: TESTING!!

○ Especially unit tests.

Continuous Integration

60

● Harness, Vercel, Heroku, …
● Runs on each commit
● Lets you deploy versions of code automatically as you work on them

○ Usually deploys a release git branch to production, and other git branches
to a development deployment, so that changes can be tested manually and
experimented with before actually going out to the world.

Continuous Deployment

61

[buildkite demo]

Exploring CI

62

[vercel demo]

Exploring CD

63

